Bucala R, Spiegel LA, Chesney J, Hogan M, Cerami A: Circulating fibrocytes define a new leukocyte subpopulation that mediates tissue repair. Mol Med. 1994, 1: 71-81.
PubMed Central
CAS
PubMed
Google Scholar
Abe R, Donnelly SC, Peng T, Bucala R, Metz CN: Peripheral blood fibrocytes: differentiation pathway and migration to wound sites. J Immunol. 2001, 166: 7556-7562.
Article
CAS
PubMed
Google Scholar
Gomperts BN, Strieter RM: Fibrocytes in lung disease. J Leukoc Biol. 2007, 82: 449-456. 10.1189/jlb.0906587.
Article
CAS
PubMed
Google Scholar
Quan TE, Cowper S, Wu SP, Bockenstedt LK, Bucala R: Circulating fibrocytes: collagen-secreting cells of the peripheral blood. Int J Biochem Cell Biol. 2004, 36: 598-606. 10.1016/j.biocel.2003.10.005.
Article
CAS
PubMed
Google Scholar
Pilling D, Buckley CD, Salmon M, Gomer RH: Inhibition of fibrocyte differentiation by serum amyloid P. J Immunol. 2003, 171: 5537-5546.
Article
PubMed Central
CAS
PubMed
Google Scholar
Pilling D, Tucker NM, Gomer RH: Aggregated IgG inhibits the differentiation of human fibrocytes. J Leukoc Biol. 2006, 79: 1242-1251. 10.1189/jlb.0805456.
Article
PubMed Central
CAS
PubMed
Google Scholar
Shao DD, Suresh R, Vakil V, Gomer RH, Pilling D: Pivotal advance: Th-1 cytokines inhibit, and Th-2 cytokines promote fibrocyte differentiation. J Leukoc Biol. 2008, 83: 1323-1333. 10.1189/jlb.1107782.
Article
PubMed Central
CAS
PubMed
Google Scholar
Yang L, Scott PG, Giuffre J, Shankowsky HA, Ghahary A, Tredget EE: Peripheral blood fibrocytes from burn patients: identification and quantification of fibrocytes in adherent cells cultured from peripheral blood mononuclear cells. Lab Invest. 2002, 82: 1183-1192.
Article
CAS
PubMed
Google Scholar
Chesney J, Bucala R: Peripheral blood fibrocytes: novel fibroblast-like cells that present antigen and mediate tissue repair. Biochem Soc Trans. 1997, 25: 520-524.
Article
CAS
PubMed
Google Scholar
Bellini A, Mattoli S: The role of the fibrocyte, a bone marrow-derived mesenchymal progenitor, in reactive and reparative fibroses. Lab Invest. 2007, 87: 858-870. 10.1038/labinvest.3700654.
Article
CAS
PubMed
Google Scholar
Hartlapp I, Abe R, Saeed RW, Peng T, Voelter W, Bucala R, Metz CN: Fibrocytes induce an angiogenic phenotype in cultured endothelial cells and promote angiogenesis in vivo. FASEB J. 2001, 15: 2215-2224. 10.1096/fj.01-0049com.
Article
CAS
PubMed
Google Scholar
Pilling D, Gomer RH: Regulatory pathways for fibrocyte differentiation. Fibrocytes: New Insights into Tissue Repair and Systemic Fibroses. Edited by: Bucala R. 2007, Singapore: World Scientific, 37-60. full_text.
Chapter
Google Scholar
Wang J, Jiao H, Stewart TL, Shankowsky HA, Scott PG, Tredget EE: Improvement in postburn hypertrophic scar after treatment with IFN-a2b is associated with decreased fibrocytes. J Interferon Cytokine Res. 2007, 27: 921-930. 10.1089/jir.2007.0008.
Article
PubMed
Google Scholar
Katebi M, Fernandez P, Chan E, Cronstein B: Adenosine A2A receptor blockade or deletion diminishes fibrocyte accumulation in the skin in a murine model of scleroderma, bleomycin-induced fibrosis. Inflammation. 2008, 31: 299-303. 10.1007/s10753-008-9078-y.
Article
PubMed Central
CAS
PubMed
Google Scholar
Vannella KM, McMillan TR, Charbeneau RP, Wilke CA, Thomas PE, Toews GB, Peters-Golden M, Moore BB: Cysteinyl leukotrienes are autocrine and paracrine regulators of fibrocyte function. J Immunol. 2007, 179: 7883-7890.
Article
PubMed Central
CAS
PubMed
Google Scholar
Ferreira MC, Tuma P, Carvalho VF, Kamamoto F: Complex wounds. Clinics. 2006, 61: 571-578. 10.1590/S1807-59322006000600014.
Article
PubMed
Google Scholar
Safioleas M, Stamatakos M, Mouzopoulos G, Diab A, Kontzoglou K, Papachristodoulou A: Fournier's gangrene: exists and it is still lethal. Int Urol Nephrol. 2006, 38: 653-657. 10.1007/s11255-005-2946-6.
Article
CAS
PubMed
Google Scholar
Hawn TR, Misch EA, Dunstan SJ, Thwaites GE, Lan NT, Quy HT, Chau TT, Rodrigues S, Nachman A, Janer M, Hien TT, Farrar JJ, Aderem A: A common human TLR1 polymorphism regulates the innate immune response to lipopeptides. Eur J Immunol. 2007, 37: 2280-2289. 10.1002/eji.200737034.
Article
CAS
PubMed
Google Scholar
Trinchieri G, Sher A: Cooperation of Toll-like receptor signals in innate immune defence. Nat Rev Immunol. 2007, 7: 179-190. 10.1038/nri2038.
Article
CAS
PubMed
Google Scholar
Beutler BA: TLRs and innate immunity. Blood. 2009, 113: 1399-1407. 10.1182/blood-2008-07-019307.
Article
PubMed Central
CAS
PubMed
Google Scholar
Medzhitov R, Janeway C: The Toll receptor family and microbial recognition. Trends Microbiol. 2000, 8: 452-456. 10.1016/S0966-842X(00)01845-X.
Article
CAS
PubMed
Google Scholar
Medzhitov R, Janeway C: Innate immune induction of the adaptive immune response. Cold Spring Harb Symp Quant Biol. 1999, 64: 429-435. 10.1101/sqb.1999.64.429.
Article
CAS
PubMed
Google Scholar
Akira S: Mammalian Toll-like receptors. Curr Opin Immunol. 2003, 15: 5-11. 10.1016/S0952-7915(02)00013-4.
Article
CAS
PubMed
Google Scholar
Janeway CA, Medzhitov R: Innate immune recognition. Annu Rev Immunol. 2002, 20: 197-216. 10.1146/annurev.immunol.20.083001.084359.
Article
CAS
PubMed
Google Scholar
Medzhitov R, Janeway CA: Innate immune recognition and control of adaptive immune responses. Semin Immunol. 1998, 10: 351-353. 10.1006/smim.1998.0136.
Article
CAS
PubMed
Google Scholar
Pilling D, Vakil V, Gomer RH: Improved serum-free culture conditions for the differentiation of human and murine fibrocytes. J Immunol Meth. 2009, 351: 62-70. 10.1016/j.jim.2009.09.011.
Article
CAS
Google Scholar
Pilling D, Roife D, Wang M, Ronkainen S, Crawford JR, Travis EL, Gomer RH: Reduction of bleomycin-induced pulmonary fibrosis by serum amyloid P. J Immunol. 2007, 179: 4035-4044.
Article
PubMed Central
CAS
PubMed
Google Scholar
Pilling DFT, Huang D, Kaul B, Gomer RH: Identification of markers that distinguish monocyte-derived fibrocytes from monocytes, macrophages, and fibroblasts. PLoS ONE. 2009, 4: e7475-10.1371/journal.pone.0007475.
Article
PubMed Central
PubMed
Google Scholar
Zeng H, Wu H, Sloane V, Jones R, Yu Y, Lin P, Gewirtz AT, Neish AS: Flagellin/TLR5 responses in epithelia reveal intertwined activation of inflammatory and apoptotic pathways. Am J Physiol Gastrointest Liver Physiol. 2006, 290: G96-G108. 10.1152/ajpgi.00273.2005.
Article
CAS
PubMed
Google Scholar
Bekeredjian-Ding I, Roth SI, Gilles S, Giese T, Ablasser A, Hornung V, Endres S, Hartmann G: T cell-independent, TLR-induced IL-12p70 production in primary human monocytes. J Immunol. 2006, 176: 7438-7446.
Article
CAS
PubMed
Google Scholar
Wang JE, Jorgensen PF, Almlof M, Thiemermann C, Foster SJ, Aasen AO, Solberg R: Peptidoglycan and lipoteichoic acid from Staphylococcus aureus induce tumor necrosis factor α, interleukin 6 (IL-6), and IL-10 production in both T cells and monocytes in a human whole blood model. Infect Immun. 2000, 68: 3965-3970. 10.1128/IAI.68.7.3965-3970.2000.
Article
PubMed Central
CAS
PubMed
Google Scholar
Gallucci S, Matzinger P: Danger signals: SOS to the immune system. Curr Opin Immunol. 2001, 13: 114-119. 10.1016/S0952-7915(00)00191-6.
Article
CAS
PubMed
Google Scholar
Iwasaki A, Medzhitov R: Toll-like receptor control of the adaptive immune responses. Nat Immunol. 2004, 5: 987-995. 10.1038/ni1112.
Article
CAS
PubMed
Google Scholar
Janeway CA, Medzhitov R: Lipoproteins take their toll on the host. Curr Biol. 1999, 9: R879-R882. 10.1016/S0960-9822(00)80073-1.
Article
CAS
PubMed
Google Scholar
Philpott DJ, Girardin SE: The role of Toll-like receptors and Nod proteins in bacterial infection. Mol Immunol. 2004, 41: 1099-1108. 10.1016/j.molimm.2004.06.012.
Article
CAS
PubMed
Google Scholar
Travassos LH, Girardin SE, Philpott DJ, Blanot D, Nahori MA, Werts C, Boneca IG: Toll-like receptor 2-dependent bacterial sensing does not occur via peptidoglycan recognition. EMBO Rep. 2004, 5: 1000-1006. 10.1038/sj.embor.7400248.
Article
PubMed Central
CAS
PubMed
Google Scholar
Kanczkowski W, Zacharowski K, Wirth MP, Ehrhart-Bornstein M, Bornstein SR: Differential expression and action of Toll-like receptors in human adrenocortical cells. Mol Cell Endocrinol. 2009, 300: 57-65. 10.1016/j.mce.2008.10.028.
Article
CAS
PubMed
Google Scholar
Taylor RC, Richmond P, Upham JW: Toll-like receptor 2 ligands inhibit TH2 responses to mite allergen. J Allergy Clin Immunol. 2006, 117: 1148-1154. 10.1016/j.jaci.2006.02.014.
Article
CAS
PubMed
Google Scholar
Hornung V, Rothenfusser S, Britsch S, Krug A, Jahrsdorfer B, Giese J, Endres S, Hartmann G: Quantitative expression of Toll-like receptor 1-10 mRNA in cellular subsets of human peripheral blood mononuclear cells and sensitivity to CpG oligodeoxynucleotides. J Immunol. 2002, 168: 4531-4537.
Article
CAS
PubMed
Google Scholar
Zarember KA, Godowski PJ: Tissue expression of human Toll-like receptors and differential regulation of Toll-like receptor mRNAs in leukocytes in response to microbes, their products, and cytokines. J Immunol. 2002, 168: 554-561.
Article
CAS
PubMed
Google Scholar
Farhat K, Riekenberg S, Heine H, Debarry J, Lang R, Mages J, Buwitt-Beckmann U, Roschmann K, Jung G, Wiesmuller KH, Ulmer AJ: Heterodimerization of TLR2 with TLR1 or TLR6 expands the ligand spectrum but does not lead to differential signaling. J Leukoc Biol. 2008, 83: 692-701. 10.1189/jlb.0807586.
Article
CAS
PubMed
Google Scholar
Keating SE, Maloney GM, Moran EM, Bowie AG: IRAK-2 participates in multiple Toll-like receptor signaling pathways to NFκB via activation of TRAF6 ubiquitination. J Biol Chem. 2007, 282: 33435-33443. 10.1074/jbc.M705266200.
Article
CAS
PubMed
Google Scholar
Akira S, Uematsu S, Takeuchi O: Pathogen recognition and innate immunity. Cell. 2006, 124: 783-801. 10.1016/j.cell.2006.02.015.
Article
CAS
PubMed
Google Scholar
Hoebe K, Janssen E, Beutler B: The interface between innate and adaptive immunity. Nat Immunol. 2004, 5: 971-974. 10.1038/ni1004-971.
Article
CAS
PubMed
Google Scholar
Akira S: Pathogen recognition and innate immunity. Cell. 2006, 124: 783-801. 10.1016/j.cell.2006.02.015.
Article
CAS
PubMed
Google Scholar
Yamamoto M, Sato S, Hemmi H, Hoshino K, Kaisho T, Sanjo H, Takeuchi O, Sugiyama M, Okabe M, Takeda K, Akira S: Role of adaptor TRIF in the MyD88-independent Toll-like receptor signaling pathway. Science. 2003, 301: 640-643. 10.1126/science.1087262.
Article
CAS
PubMed
Google Scholar
Gerold G, Ajaj KA, Bienert M, Laws HJ, Zychlinsky A, de Diego JL: A Toll-like receptor 2-integrin β3 complex senses bacterial lipopeptides via vitronectin. Nat Immunol. 2008, 9: 761-768. 10.1038/ni.1618.
Article
CAS
PubMed
Google Scholar
Puissegur MP, Lay G, Gilleron M, Botella L, Nigou J, Marrakchi H, Mari B, Duteyrat JL, Guerardel Y, Kremer L, Barbry P, Puzo G, Altare F: Mycobacterial lipomannan induces granuloma macrophage fusion via a TLR2-dependent, ADAM9- and β1 integrin-mediated pathway. J Immunol. 2007, 178: 3161-3169.
Article
CAS
PubMed
Google Scholar
Ghosh TK, Mickelson DJ, Fink J, Solberg JC, Inglefield JR, Hook D, Gupta SK, Gibson S, Alkan SS: Toll-like receptor (TLR) 2-9 agonists-induced cytokines and chemokines: I. Comparison with T cell receptor-induced responses. Cell Immunol. 2006, 243: 48-57. 10.1016/j.cellimm.2006.12.002.
Article
CAS
PubMed
Google Scholar
Paulnock DM, Demick KP, Coller SP: Analysis of interferon-γ-dependent and -independent pathways of macrophage activation. J Leukoc Biol. 2000, 67: 677-682.
CAS
PubMed
Google Scholar
Yoshimura A, Kaneko T, Kato Y, Golenbock DT, Hara Y: Lipopolysaccharides from periodontopathic bacteria porphyromonas gingivalis and Capnocytophaga ochracea are antagonists for human Toll-like receptor 4. Infect Immun. 2002, 70: 218-225. 10.1128/IAI.70.1.218-225.2002.
Article
PubMed Central
CAS
PubMed
Google Scholar
Uehara A, Iwashiro A, Sato T, Yokota S, Takada H: Antibodies to proteinase 3 prime human monocytic cells via protease-activated receptor-2 and NF-κB for Toll-like receptor- and NOD-dependent activation. Mol Immunol. 2007, 44: 3552-3562. 10.1016/j.molimm.2007.03.010.
Article
CAS
PubMed
Google Scholar
Megyeri K, Au WC, Rosztoczy I, Raj NB, Miller RL, Pitha PM: Stimulation of interferon and cytokine gene expression by imiquimod and stimulation by Sendai virus utilize similar signal transduction pathways. Mol Cell Biol. 1995, 15: 2207-2218.
Article
PubMed Central
CAS
PubMed
Google Scholar
Phipps-Yonas H, Seto J, Sealfon SC, Moran TM, Fernandez-Sesma A: Interferon-β pretreatment of conventional and plasmacytoid human dendritic cells enhances their activation by influenza virus. PLoS Pathog. 2008, 4: e1000193-10.1371/journal.ppat.1000193.
Article
PubMed Central
PubMed
Google Scholar
Al-Salleeh F, Petro TM: TLR3 and TLR7 are involved in expression of IL-23 subunits while TLR3 but not TLR7 is involved in expression of IFN-β by Theiler's virus-infected RAW264.7 cells. Microbes Infect. 2007, 9: 1384-1392. 10.1016/j.micinf.2007.07.001.
Article
CAS
PubMed
Google Scholar
Pope BL, Chourmouzis E, Victorino L, MacIntyre JP, Capetola RJ, Lau CY: Loxoribine (7-allyl-8-oxoguanosine) activates natural killer cells and primes cytolytic precursor cells for activation by IL-2. J Immunol. 1993, 151: 3007-3017.
CAS
PubMed
Google Scholar
Levy O, Suter EE, Miller RL, Wessels MR: Unique efficacy of Toll-like receptor 8 agonists in activating human neonatal antigen-presenting cells. Blood. 2006, 108: 1284-1290. 10.1182/blood-2005-12-4821.
Article
PubMed Central
CAS
PubMed
Google Scholar
Roberts TL, Dunn JA, Terry TD, Jennings MP, Hume DA, Sweet MJ, Stacey KJ: Differences in macrophage activation by bacterial DNA and CpG-containing oligonucleotides. J Immunol. 2005, 175: 3569-3576.
Article
CAS
PubMed
Google Scholar
Bauer M, Heeg K, Wagner H, Lipford GB: DNA activates human immune cells through a CpG sequence-dependent manner. Immunology. 1999, 97: 699-705. 10.1046/j.1365-2567.1999.00811.x.
Article
PubMed Central
CAS
PubMed
Google Scholar
Bauer S, Kirschning CJ, Häcker H, Redecke V, Hausmann S, Akira S, Wagner H, Lipford GB: Human TLR9 confers responsiveness to bacterial DNA via species-specific CpG motif recognition. Proc Natl Acad Sci USA. 2001, 98: 9237-9242. 10.1073/pnas.161293498.
Article
PubMed Central
CAS
PubMed
Google Scholar
Kwok SK, Lee JY, Park SH, Cho ML, Min SY, Park SH, Kim HY, Cho YG: Dysfunctional interferon-α production by peripheral plasmacytoid dendritic cells upon Toll-like receptor-9 stimulation in patients with systemic lupus erythematosus. Arthritis Res Ther. 2008, 10: R29-10.1186/ar2382.
Article
PubMed Central
PubMed
Google Scholar
Mitsuzawa H, Wada I, Sano H, Iwaki D, Murakami S, Himi T, Matsushima N, Kuroki Y: Extracellular toll-like receptor 2 region containing serine40-isoleucine64 but not cysteine30-serine39 is critical for the recognition of Staphylococcus aureus peptidoglycan. J Biol Chem. 2001, 276: 41350-41356. 10.1074/jbc.M104177200.
Article
CAS
PubMed
Google Scholar