Freitas I, Baronzio GF, Bono B, Griffini P, Bertone V, Sonzini N, Magrassi GR, Bonandrini L, Gerzeli G: Tumor interstitial fluid: misconsidered component of the internal milieu of a solid tumor. Anticancer Res. 1997, 17: 165-172.
CAS
PubMed
Google Scholar
Aukland K, Nicolaysen G: Interstitial fluid volume: local regulatory mechanisms. Physiol Rev. 1981, 61: 556-643.
CAS
PubMed
Google Scholar
Aukland K, Reed RK: Interstitial-lymphatic mechanisms in the control of extracellular fluid volume. Physiol Rev. 1993, 73: 1-78.
CAS
PubMed
Google Scholar
Michel C: Fluid movement through capillary walls. Handbook of Physiology The cardiovascular system Volume IV Microcirculation. Edited by: Renkin E, Michel C. 1984, Bethesda, MD: American Physiological Society, 375-409.
Google Scholar
Michel CC, Curry FE: Microvascular permeability. Physiol Rev. 1999, 79: 703-761.
CAS
PubMed
Google Scholar
Rippe B, Haraldsson B: Transport of macromolecules across microvascular walls: the two-pore theory. Physiol Rev. 1994, 74: 163-219.
CAS
PubMed
Google Scholar
Taylor A, Granger D: Exchange of macromolecular substances across the capillary wall. Handbook of Physiology The cardiovascular system Volume IV Microcirculation. Edited by: Renkin E, Michel C. 1984, Bethesda, MD: American Physiological Society, 467-520.
Google Scholar
Curry FR: Microvascular solute and water transport. Microcirculation. 2005, 12: 17-31. 10.1080/10739680590894993.
Article
CAS
PubMed
Google Scholar
Mehta D, Malik AB: Signaling mechanisms regulating endothelial permeability. Physiol Rev. 2006, 86: 279-367. 10.1152/physrev.00012.2005.
Article
CAS
PubMed
Google Scholar
Bert JL, Pearce RH: The interstitium and microvascular exchange. Handbook of Physiology Sect 2: The cardiovascular system Volume IV, Microcirculation. Edited by: Renkin EM, Michel CC. 1984, Bethesda, MD: American Physiological Society, 521-547.
Google Scholar
Comper WD, Laurent TC: Physiological function of connective tissue polysaccharides. Physiol Rev. 1978, 58: 255-315.
CAS
PubMed
Google Scholar
Jackson RL, Busch SJ, Cardin AD: Glycosaminoglycans: molecular properties, protein interactions, and role in physiological processes. Physiol Rev. 1991, 71: 481-539.
CAS
PubMed
Google Scholar
Gelse K, Poschl E, Aigner T: Collagens: structure, function, and biosynthesis. Adv Drug Deliv Rev. 2003, 55: 1531-1546. 10.1016/j.addr.2003.08.002.
Article
CAS
PubMed
Google Scholar
Kjaer M: Role of extracellular matrix in adaptation of tendon and skeletal muscle to mechanical loading. Physiol Rev. 2004, 84: 649-698. 10.1152/physrev.00031.2003.
Article
CAS
PubMed
Google Scholar
Raman R, Sasisekharan V, Sasisekharan R: Structural insights into biological roles of protein-glycosaminoglycan interactions. Chem Biol. 2005, 12: 267-277. 10.1016/j.chembiol.2004.11.020.
Article
CAS
PubMed
Google Scholar
Coussens LM, Werb Z: Inflammation and cancer. Nature. 2002, 420: 860-867. 10.1038/nature01322.
Article
PubMed Central
CAS
PubMed
Google Scholar
Kalluri R: Basement membranes: structure, assembly and role in tumour angiogenesis. Nat Rev Cancer. 2003, 3: 422-433. 10.1038/nrc1094.
Article
CAS
PubMed
Google Scholar
Kalluri R, Zeisberg M: Fibroblasts in cancer. Nat Rev Cancer. 2006, 6: 392-401. 10.1038/nrc1877.
Article
CAS
PubMed
Google Scholar
Mueller MM, Fusenig NE: Friends or foes: bipolar effects of the tumour stroma in cancer. Nat Rev Cancer. 2004, 4: 839-849. 10.1038/nrc1477.
Article
CAS
PubMed
Google Scholar
Liotta LA, Kohn EC: The microenvironment of the tumour-host interface. Nature. 2001, 411: 375-379. 10.1038/35077241.
Article
CAS
PubMed
Google Scholar
Mantovani A, Allavena P, Sica A, Balkwill F: Cancer-related inflammation. Nature. 2008, 454: 436-444. 10.1038/nature07205.
Article
CAS
PubMed
Google Scholar
Sund M, Kalluri R: Tumor stroma derived biomarkers in cancer. Cancer Metastasis Rev. 2009, 28: 177-183. 10.1007/s10555-008-9175-2.
Article
PubMed Central
PubMed
Google Scholar
Brown LF, Guidi AJ, Schnitt SJ, Van De Water L, Iruela-Arispe ML, Yeo TK, Tognazzi K, Dvorak HF: Vascular stroma formation in carcinoma in situ, invasive carcinoma, and metastatic carcinoma of the breast. Clin Cancer Res. 1999, 5: 1041-1056.
CAS
PubMed
Google Scholar
Fukumura D, Xavier R, Sugiura T, Chen Y, Park EC, Lu N, Selig M, Nielsen G, Taksir T, Jain RK, Seed B: Tumor induction of VEGF promoter activity in stromal cells. Cell. 1998, 94: 715-725. 10.1016/S0092-8674(00)81731-6.
Article
CAS
PubMed
Google Scholar
Dvorak HF, Sioussat TM, Brown LF, Berse B, Nagy JA, Sotrel A, Manseau EJ, Van de Water L, Senger DR: Distribution of vascular permeability factor (vascular endothelial growth factor) in tumors: concentration in tumor blood vessels. J Exp Med. 1991, 174: 1275-1278. 10.1084/jem.174.5.1275.
Article
CAS
PubMed
Google Scholar
Senger DR, Galli SJ, Dvorak AM, Perruzzi CA, Harvey VS, Dvorak HF: Tumor cells secrete a vascular permeability factor that promotes accumulation of ascites fluid. Science. 1983, 219: 983-985. 10.1126/science.6823562.
Article
CAS
PubMed
Google Scholar
Dvorak HF: Tumors: wounds that do not heal. Similarities between tumor stroma generation and wound healing. N Engl J Med. 1986, 315: 1650-1659. 10.1056/NEJM198612253152606.
Article
CAS
PubMed
Google Scholar
Mahfouz SM, Chevallier M, Grimaud JA: Distribution of the major connective matrix components of the stromal reaction in breast carcinoma: an immunohistochemical study. Cell Mol Biol. 1987, 33: 453-467.
CAS
PubMed
Google Scholar
Takeuchi J, Sobue M, Sato E, Shamoto M, Miura K: Variation in glycosaminoglycan components of breast tumors. Cancer Res. 1976, 36: 2133-2139.
CAS
PubMed
Google Scholar
Yeo TK, Brown L, Dvorak HF: Alterations in proteoglycan synthesis common to healing wounds and tumors. Am J Pathol. 1991, 138: 1437-1450.
PubMed Central
CAS
PubMed
Google Scholar
Ronnov-Jessen L, Petersen OW, Bissell MJ: Cellular changes involved in conversion of normal to malignant breast: importance of the stromal reaction. Physiol Rev. 1996, 76: 69-125.
CAS
PubMed
Google Scholar
Albini A, Sporn MB: The tumour microenvironment as a target for chemoprevention. Nat Rev Cancer. 2007, 7: 139-147. 10.1038/nrc2067.
Article
CAS
PubMed
Google Scholar
Bierie B, Moses HL: Tumour microenvironment: TGFβ: the molecular Jekyll and Hyde of cancer. Nat Rev Cancer. 2006, 6: 506-520. 10.1038/nrc1926.
Article
CAS
PubMed
Google Scholar
Overall CM, Kleifeld O: Tumour microenvironment - opinion: validating matrix metalloproteinases as drug targets and anti-targets for cancer therapy. Nat Rev Cancer. 2006, 6: 227-239. 10.1038/nrc1821.
Article
CAS
PubMed
Google Scholar
Alitalo K, Tammela T, Petrova TV: Lymphangiogenesis in development and human disease. Nature. 2005, 438: 946-953. 10.1038/nature04480.
Article
CAS
PubMed
Google Scholar
Thiele W, Sleeman JP: Tumor-induced lymphangiogenesis: a target for cancer therapy?. J Biotechnol. 2006, 124: 224-241. 10.1016/j.jbiotec.2006.01.007.
Article
CAS
PubMed
Google Scholar
Leu AJ, Berk DA, Lymboussaki A, Alitalo K, Jain RK: Absence of functional lymphatics within a murine sarcoma: a molecular and functional evaluation. Cancer Res. 2000, 60: 4324-4327.
CAS
PubMed
Google Scholar
Stacker SA, Caesar C, Baldwin ME, Thornton GE, Williams RA, Prevo R, Jackson DG, Nishikawa S, Kubo H, Achen MG: VEGF-D promotes the metastatic spread of tumor cells via the lymphatics. Nat Med. 2001, 7: 186-191. 10.1038/84635.
Article
CAS
PubMed
Google Scholar
Padera TP, Kadambi A, di Tomaso E, Carreira CM, Brown EB, Boucher Y, Choi NC, Mathisen D, Wain J, Mark EJ, Munn LL, Jain RK: Lymphatic metastasis in the absence of functional intratumor lymphatics. Science. 2002, 296: 1883-1886. 10.1126/science.1071420.
Article
CAS
PubMed
Google Scholar
Sylven B, Bois I: Protein content and enzymatic assays of interstitital fluid from some normal tissues and transplanted mouse tumors. Cancer Res. 1960, 20: 831-836.
CAS
PubMed
Google Scholar
Gullino PM, Clark SH, Grantham FH: The interstitial fluid of solid tumors. Cancer Res. 1964, 24: 780-798.
CAS
PubMed
Google Scholar
Jain RK: Transport of molecules in the tumor interstitium: a review. Cancer Res. 1987, 47: 3039-3051.
CAS
PubMed
Google Scholar
Stohrer M, Boucher Y, Stangassinger M, Jain RK: Oncotic pressure in solid tumors is elevated. Cancer Res. 2000, 60: 4251-4255.
CAS
PubMed
Google Scholar
Wiig H, Sibley L, DeCarlo M, Renkin EM: Sampling interstitial fluid from rat skeletal muscles by intermuscular wicks. Am J Physiol. 1991, 261: H155-H165.
CAS
PubMed
Google Scholar
Dabrosin C: Microdialysis: an in vivo technique for studies of growth factors in breast cancer. Front Biosci. 2005, 10: 1329-1335. 10.2741/1622.
Article
CAS
PubMed
Google Scholar
Benjamin RK, Hochberg FH, Fox E, Bungay PM, Elmquist WF, Stewart CF, Gallo JM, Collins JM, Pelletier RP, de Groot JF, Hickner RC, Cavus I, Grossman SA, Colvin OM: Review of microdialysis in brain tumors, from concept to application: first annual Carolyn Frye-Halloran symposium. Neuro Oncol. 2004, 6: 65-74. 10.1215/S1152851703000103.
Article
PubMed Central
PubMed
Google Scholar
Boschi G, Scherrmann J: Microdialysis in mice for drug delivery research. Adv Drug Deliv Rev. 2000, 45: 271-281. 10.1016/S0169-409X(00)00111-3.
Article
CAS
PubMed
Google Scholar
Brunner M, Muller M: Microdialysis: an in vivo approach for measuring drug delivery in oncology. Eur J Clin Pharmacol. 2002, 58: 227-234. 10.1007/s00228-002-0475-0.
Article
CAS
PubMed
Google Scholar
Chu J, Gallo JM: Application of microdialysis to characterize drug disposition in tumors. Adv Drug Deliv Rev. 2000, 45: 243-253. 10.1016/S0169-409X(00)00115-0.
Article
CAS
PubMed
Google Scholar
Dabrosin C: Positive correlation between estradiol and vascular endothelial growth factor but not fibroblast growth factor-2 in normal human breast tissue in vivo. Clin Cancer Res. 2005, 11: 8036-8041. 10.1158/1078-0432.CCR-05-0977.
Article
CAS
PubMed
Google Scholar
Dabrosin C, Margetts PJ, Gauldie J: Estradiol increases extracellular levels of vascular endothelial growth factor in vivo in murine mammary cancer. Int J Cancer. 2003, 107: 535-540. 10.1002/ijc.11398.
Article
CAS
PubMed
Google Scholar
Zhong H, Han B, Tourkova IL, Lokshin A, Rosenbloom A, Shurin MR, Shurin GV: Low-dose paclitaxel prior to intratumoral dendritic cell vaccine modulates intratumoral cytokine network and lung cancer growth. Clin Cancer Res. 2007, 13: 5455-5462. 10.1158/1078-0432.CCR-07-0517.
Article
PubMed Central
CAS
PubMed
Google Scholar
Zhou Q, Gallo JM: In vivo microdialysis for PK and PD studies of anticancer drugs. AAPS J. 2005, 7: E659-E667. 10.1208/aapsj070366.
Article
PubMed Central
CAS
PubMed
Google Scholar
Ao X, Stenken JA: Microdialysis sampling of cytokines. Methods. 2006, 38: 331-341. 10.1016/j.ymeth.2005.11.012.
Article
CAS
PubMed
Google Scholar
Clough GF: Microdialysis of large molecules. AAPS J. 2005, 7: E686-E692. 10.1208/aapsj070369.
Article
PubMed Central
CAS
PubMed
Google Scholar
Leegsma-Vogt G, Janle E, Ash SR, Venema K, Korf J: Utilization of in vivo ultrafiltration in biomedical research and clinical applications. Life Sci. 2003, 73: 2005-2018. 10.1016/S0024-3205(03)00569-1.
Article
CAS
PubMed
Google Scholar
Schneiderheinze JM, Hogan BL: Selective in vivo and in vitro sampling of proteins using miniature ultrafiltration sampling probes. Anal Chem. 1996, 68: 3758-3762. 10.1021/ac960309u.
Article
CAS
PubMed
Google Scholar
Huang CM, Wang CC, Barnes S, Elmets CA: In vivo detection of secreted proteins from wounded skin using capillary ultrafiltration probes and mass spectrometric proteomics. Proteomics. 2006, 6: 5805-5814. 10.1002/pmic.200600163.
Article
CAS
PubMed
Google Scholar
Huang CM, Wang CC, Kawai M, Barnes S, Elmets CA: In vivo protein sampling using capillary ultrafiltration semi-permeable hollow fiber and protein identification via mass spectrometry-based proteomics. J Chromatogr A. 2006, 1109: 144-151. 10.1016/j.chroma.2005.11.104.
Article
CAS
PubMed
Google Scholar
Huang CM, Ananthaswamy HN, Barnes S, Ma Y, Kawai M, Elmets CA: Mass spectrometric proteomics profiles of in vivo tumor secretomes: capillary ultrafiltration sampling of regressive tumor masses. Proteomics. 2006, 6: 6107-6116. 10.1002/pmic.200600287.
Article
CAS
PubMed
Google Scholar
Wiig H, Aukland K, Tenstad O: Isolation of interstitial fluid from rat mammary tumors by a centrifugation method. Am J Physiol Heart Circ Physiol. 2003, 284: H416-H424.
Article
CAS
PubMed
Google Scholar
Wiig H: Cornea fluid dynamics. I: measurement of hydrostatic and colloid osmotic pressure in rabbits. Exp Eye Res. 1989, 49: 1015-1030. 10.1016/S0014-4835(89)80023-5.
Article
CAS
PubMed
Google Scholar
Aukland K: Distribution volumes and macromolecular mobility in rat tail tendon interstitium. Am J Physiol. 1991, 260: H409-H419.
CAS
PubMed
Google Scholar
Aukland K, Wiig H, Tenstad O, Renkin EM: Interstitial exclusion of macromolecules studied by graded centrifugation of rat tail tendon. Am J Physiol. 1997, 273: H2794-H2803.
CAS
PubMed
Google Scholar
Choi J, Credit K, Henderson K, Deverkadra R, He Z, Wiig H, Vanpelt H, Flessner MF: Intraperitoneal immunotherapy for metastatic ovarian carcinoma: Resistance of intratumoral collagen to antibody penetration. Clin Cancer Res. 2006, 12: 1906-1912. 10.1158/1078-0432.CCR-05-2141.
Article
CAS
PubMed
Google Scholar
Salnikov AV, Heldin NE, Stuhr LB, Wiig H, Gerber H, Reed RK, Rubin K: Inhibition of carcinoma cell-derived VEGF reduces inflammatory characteristics in xenograft carcinoma. Int J Cancer. 2006, 119: 2795-2802. 10.1002/ijc.22217.
Article
CAS
PubMed
Google Scholar
Celis JE, Gromov P, Cabezon T, Moreira JM, Ambartsumian N, Sandelin K, Rank F, Gromova I: Proteomic characterization of the interstitial fluid perfusing the breast tumor microenvironment: a novel resource for biomarker and therapeutic target discovery. Mol Cell Proteomics. 2004, 3: 327-344. 10.1074/mcp.M400009-MCP200.
Article
CAS
PubMed
Google Scholar
Celis JE, Moreira JM, Cabezon T, Gromov P, Friis E, Rank F, Gromova I: Identification of extracellular and intracellular signaling components of the mammary adipose tissue and its interstitial fluid in high risk breast cancer patients: toward dissecting the molecular circuitry of epithelial-adipocyte stromal cell interactions. Mol Cell Proteomics. 2005, 4: 492-522. 10.1074/mcp.M500030-MCP200.
Article
CAS
PubMed
Google Scholar
Gullino PM: The internal milieu of tumors. Prog Exp Tumor Res. 1966, 8: 1-25.
Article
CAS
PubMed
Google Scholar
Jain RK, Shah SA, Finney PL: Continuous noninvasive monitoring of pH and temperature in rat Walker 256 carcinoma during normoglycemia and hyperglycemia. J Natl Cancer Inst. 1984, 73: 429-436.
CAS
PubMed
Google Scholar
Heldin CH, Rubin K, Pietras K, Ostman A: High interstitial fluid pressure: an obstacle in cancer therapy. Nat Rev Cancer. 2004, 4: 806-813. 10.1038/nrc1456.
Article
CAS
PubMed
Google Scholar
Esko JD, Selleck SB: Order out of chaos: assembly of ligand binding sites in heparan sulfate. Annu Rev Biochem. 2002, 71: 435-471. 10.1146/annurev.biochem.71.110601.135458.
Article
CAS
PubMed
Google Scholar
Ferrara N, Gerber HP, LeCouter J: The biology of VEGF and its receptors. Nat Med. 2003, 9: 669-676. 10.1038/nm0603-669.
Article
CAS
PubMed
Google Scholar
Fjeldstad K, Kolset SO: Decreasing the metastatic potential in cancers: targeting the heparan sulfate proteoglycans. Curr Drug Targets. 2005, 6: 665-682. 10.2174/1389450054863662.
Article
CAS
PubMed
Google Scholar
Kadenhe-Chiweshe A, Papa J, McCrudden KW, Frischer J, Bae JO, Huang J, Fisher J, Lefkowitch JH, Feirt N, Rudge J, Holash J, Yancopoulos GD, Kandel JJ, Yamashiro DJ: Sustained VEGF blockade results in microenvironmental sequestration of VEGF by tumors and persistent VEGF receptor-2 activation. Mol Cancer Res. 2008, 6: 1-9. 10.1158/1541-7786.MCR-07-0101.
Article
CAS
PubMed
Google Scholar
Garvin S, Dabrosin C: Tamoxifen inhibits secretion of vascular endothelial growth factor in breast cancer in vivo. Cancer Res. 2003, 63: 8742-8748.
CAS
PubMed
Google Scholar
Wiig H, Berggreen E, Borge BA, Iversen PO: Demonstration of altered signaling responses in bone marrow extracellular fluid during increased hematopoiesis in rats using a centrifugation method. Am J Physiol Heart Circ Physiol. 2004, 286: H2028-H2034. 10.1152/ajpheart.00934.2003.
Article
CAS
PubMed
Google Scholar
Iversen PO, Wiig H: Tumor necrosis factor alpha and adiponectin in bone marrow interstitial fluid from patients with acute myeloid leukemia inhibit normal hematopoiesis. Clin Cancer Res. 2005, 11: 6793-6799. 10.1158/1078-0432.CCR-05-1033.
Article
CAS
PubMed
Google Scholar
Kelly T, Miao HQ, Yang Y, Navarro E, Kussie P, Huang Y, MacLeod V, Casciano J, Joseph L, Zhan F, Zangari M, Barlogie B, Shaughnessy J, Sanderson RD: High heparanase activity in multiple myeloma is associated with elevated microvessel density. Cancer Res. 2003, 63: 8749-8756.
CAS
PubMed
Google Scholar
Yang Y, MacLeod V, Dai Y, Khotskaya-Sample Y, Shriver Z, Venkataraman G, Sasisekharan R, Naggi A, Torri G, Casu B, Vlodavsky I, Suva LJ, Epstein J, Yaccoby S, Shaughnessy JD, Barlogie B, Sanderson RD: The syndecan-1 heparan sulfate proteoglycan is a viable target for myeloma therapy. Blood. 2007, 110: 2041-2048. 10.1182/blood-2007-04-082495.
Article
PubMed Central
CAS
PubMed
Google Scholar
Aebersold R, Mann M: Mass spectrometry-based proteomics. Nature. 2003, 422: 198-207. 10.1038/nature01511.
Article
CAS
PubMed
Google Scholar
Hanash SM, Pitteri SJ, Faca VM: Mining the plasma proteome for cancer biomarkers. Nature. 2008, 452: 571-579. 10.1038/nature06916.
Article
CAS
PubMed
Google Scholar
Cravatt BF, Simon GM, Yates JR: The biological impact of mass-spectrometry-based proteomics. Nature. 2007, 450: 991-1000. 10.1038/nature06525.
Article
CAS
PubMed
Google Scholar
Qian WJ, Jacobs JM, Liu T, Camp DG, Smith RD: Advances and challenges in liquid chromatography-mass spectrometry-based proteomics profiling for clinical applications. Mol Cell Proteomics. 2006, 5: 1727-1744. 10.1074/mcp.M600162-MCP200.
Article
PubMed Central
CAS
PubMed
Google Scholar
Wilm M: Quantitative proteomics in biological research. Proteomics. 2009, 9: 4590-4605. 10.1002/pmic.200900299.
Article
CAS
PubMed
Google Scholar
Gstaiger M, Aebersold R: Applying mass spectrometry-based proteomics to genetics, genomics and network biology. Nat Rev Genet. 2009, 10: 617-627. 10.1038/nrg2633.
Article
CAS
PubMed
Google Scholar
Jimenez CR, Piersma C, Pham TV: High-throughput and targeted in-depth mass spectrometry-based approaches for biofluid profiling and biomarker discovery. Biomarkers in Medicine. 2007, 1: 541-565. 10.2217/17520363.1.4.541.
Article
CAS
PubMed
Google Scholar
Hu S, Loo JA, Wong DT: Human body fluid proteome analysis. Proteomics. 2006, 6: 6326-6353. 10.1002/pmic.200600284.
Article
PubMed Central
CAS
PubMed
Google Scholar
Petricoin EF, Belluco C, Araujo RP, Liotta LA: The blood peptidome: a higher dimension of information content for cancer biomarker discovery. Nat Rev Cancer. 2006, 6: 961-967. 10.1038/nrc2011.
Article
CAS
PubMed
Google Scholar
Veenstra TD: Global and targeted quantitative proteomics for biomarker discovery. J Chromatogr B Analyt Technol Biomed Life Sci. 2007, 847: 3-11. 10.1016/j.jchromb.2006.09.004.
Article
CAS
PubMed
Google Scholar
Hathout Y: Approaches to the study of the cell secretome. Expert Rev Proteomics. 2007, 4: 239-248. 10.1586/14789450.4.2.239.
Article
CAS
PubMed
Google Scholar
Maurya P, Meleady P, Dowling P, Clynes M: Proteomic approaches for serum biomarker discovery in cancer. Anticancer Res. 2007, 27: 1247-1255.
CAS
PubMed
Google Scholar
Xue H, Lu B, Lai M: The cancer secretome: a reservoir of biomarkers. J Transl Med. 2008, 6: 52-10.1186/1479-5876-6-52.
Article
PubMed Central
PubMed
Google Scholar
Rajcevic U, Niclou SP, Jimenez CR: Proteomics strategies for target identification and biomarker discovery in cancer. Front Biosci. 2009, 14: 3292-3303. 10.2741/3452.
Article
CAS
Google Scholar
Gullino PM, Grantham FH, Smith SH, Haggerty AC: Modifications of the acid-base status of the internal milieu of tumors. J Natl Cancer Inst. 1965, 34: 857-869.
CAS
PubMed
Google Scholar