Jugdutt BI: Ventricular remodeling after infarction and the extracellular collagen matrix: when is enough enough?. Circulation. 2003, 108: 1395-1403. 10.1161/01.CIR.0000085658.98621.49.
Article
PubMed
Google Scholar
Banerjee I, Fuseler JW, Price RL, Borg TK, Baudino TA: Determination of cell types and numbers during cardiac development in the neonatal and adult rat and mouse. Am J Physiol Heart Circ Physiol. 2007, 293: H1883-H1891. 10.1152/ajpheart.00514.2007.
Article
CAS
PubMed
Google Scholar
Porter KE, Turner NA: Cardiac fibroblasts: at the heart of myocardial remodeling. Pharmacol Ther. 2009, 123: 255-278. 10.1016/j.pharmthera.2009.05.002.
Article
CAS
PubMed
Google Scholar
Turner NA: The Cardiac Fibroblast. 2011, Kerala: Research Signpost
Google Scholar
Chang HY, Chi JT, Dudoit S, Bondre C, van de Rijn M, Botstein D, Brown PO: Diversity, topographic differentiation, and positional memory in human fibroblasts. Proc Natl Acad Sci U S A. 2002, 99: 12877-12882. 10.1073/pnas.162488599.
Article
PubMed Central
CAS
PubMed
Google Scholar
Krenning G, Zeisberg EM, Kalluri R: The origin of fibroblasts and mechanism of cardiac fibrosis. J Cell Physiol. 2010, 225: 631-637. 10.1002/jcp.22322.
Article
PubMed Central
CAS
PubMed
Google Scholar
van den Borne SW, Diez J, Blankesteijn WM, Verjans J, Hofstra L, Narula J: Myocardial remodeling after infarction: the role of myofibroblasts. Nat Rev Cardiol. 2010, 7: 30-37. 10.1038/nrcardio.2009.199.
Article
PubMed
Google Scholar
Tomasek JJ, Gabbiani G, Hinz B, Chaponnier C, Brown RA: Myofibroblasts and mechano-regulation of connective tissue remodelling. Nat Rev Mol Cell Biol. 2002, 3: 349-363. 10.1038/nrm809.
Article
CAS
PubMed
Google Scholar
Hinz B, Phan SH, Thannickal VJ, Prunotto M, Desmouliere A, Varga J, De WO, Mareel M, Gabbiani G: Recent developments in myofibroblast biology: paradigms for connective tissue remodeling. Am J Pathol. 2012, 180: 1340-1355. 10.1016/j.ajpath.2012.02.004.
Article
PubMed Central
CAS
PubMed
Google Scholar
Peterson DJ, Ju H, Hao J, Panagia M, Chapman DC, Dixon IM: Expression of Gi-2 alpha and Gs alpha in myofibroblasts localized to the infarct scar in heart failure due to myocardial infarction. Cardiovasc Res. 1999, 41: 575-585. 10.1016/S0008-6363(98)00264-8.
Article
CAS
PubMed
Google Scholar
Squires CE, Escobar GP, Payne JF, Leonardi RA, Goshorn DK, Sheats NJ, Mains IM, Mingoia JT, Flack EC, Lindsey ML: Altered fibroblast function following myocardial infarction. J Mol Cell Cardiol. 2005, 39: 699-707. 10.1016/j.yjmcc.2005.07.008.
Article
CAS
PubMed
Google Scholar
Beguin PC, Gosselin H, Mamarbachi M, Calderone A: Nestin expression is lost in ventricular fibroblasts during postnatal development of the rat heart and re-expressed in scar myofibroblasts. J Cell Physiol. 2012, 227: 813-820. 10.1002/jcp.22794.
Article
CAS
PubMed
Google Scholar
El-Helou V, Gosselin H, Villeneuve L, Calderone A: The plating of rat scar myofibroblasts on matrigel unmasks a novel phenotype; the self assembly of lumen-like structures. J Cell Biochem. 2012, 113: 2442-2450. 10.1002/jcb.24117.
Article
CAS
PubMed
Google Scholar
Laeremans H, Rensen SS, Ottenheijm HC, Smits JF, Blankesteijn WM: Wnt/frizzled signalling modulates the migration and differentiation of immortalized cardiac fibroblasts. Cardiovasc Res. 2010, 87: 514-523. 10.1093/cvr/cvq067.
Article
CAS
PubMed
Google Scholar
Laeremans H, Hackeng TM, van Zandvoort MA, Thijssen VL, Janssen BJ, Ottenheijm HC, Smits JF, Blankesteijn WM: Blocking of frizzled signaling with a homologous peptide fragment of wnt3a/wnt5a reduces infarct expansion and prevents the development of heart failure after myocardial infarction. Circulation. 2011, 124: 1626-1635. 10.1161/CIRCULATIONAHA.110.976969.
Article
CAS
PubMed
Google Scholar
Santiago JJ, Dangerfield AL, Rattan SG, Bathe KL, Cunnington RH, Raizman JE, Bedosky KM, Freed DH, Kardami E, Dixon IM: Cardiac fibroblast to myofibroblast differentiation in vivo and in vitro: expression of focal adhesion components in neonatal and adult rat ventricular myofibroblasts. Dev Dyn. 2010, 239: 1573-1584. 10.1002/dvdy.22280.
Article
CAS
PubMed
Google Scholar
Sun Y, Kiani MF, Postlethwaite AE, Weber KT: Infarct scar as living tissue. Basic Res Cardiol. 2002, 97: 343-347. 10.1007/s00395-002-0365-8.
Article
PubMed
Google Scholar
Rohr S: Myofibroblasts in diseased hearts: new players in cardiac arrhythmias?. Heart Rhythm. 2009, 6: 848-856. 10.1016/j.hrthm.2009.02.038.
Article
PubMed
Google Scholar
Thompson SA, Copeland CR, Reich DH, Tung L: Mechanical coupling between myofibroblasts and cardiomyocytes slows electric conduction in fibrotic cell monolayers. Circulation. 2011, 123: 2083-2093. 10.1161/CIRCULATIONAHA.110.015057.
Article
PubMed Central
CAS
PubMed
Google Scholar
Rosker C, Salvarani N, Schmutz S, Grand T, Rohr S: Abolishing myofibroblast arrhythmogeneicity by pharmacological ablation of alpha-smooth muscle actin containing stress fibers. Circ Res. 2011, 109: 1120-1131. 10.1161/CIRCRESAHA.111.244798.
Article
CAS
PubMed
Google Scholar
Pfeffer MA, Braunwald E: Ventricular remodeling after myocardial infarction. Experimental observations and clinical implications. Circulation. 1990, 81: 1161-1172. 10.1161/01.CIR.81.4.1161.
Article
CAS
PubMed
Google Scholar
Swynghedauw B: Molecular mechanisms of myocardial remodeling. Physiol Rev. 1999, 79: 215-262.
CAS
PubMed
Google Scholar
Zeisberg EM, Kalluri R: Origins of cardiac fibroblasts. Circ Res. 2010, 107: 1304-1312. 10.1161/CIRCRESAHA.110.231910.
Article
PubMed Central
CAS
PubMed
Google Scholar
Crawford JR, Haudek SB, Cieslik KA, Trial J, Entman ML: Origin of developmental precursors dictates the pathophysiologic role of cardiac fibroblasts. J Cardiovasc Transl Res. 2012, 5: 749-759. 10.1007/s12265-012-9402-7.
Article
PubMed Central
PubMed
Google Scholar
Arslan F, Smeets MB, Riem Vis PW, Karper JC, Quax PH, Bongartz LG, Peters JH, Hoefer IE, Doevendans PA, Pasterkamp G, de Kleijn DP: Lack of fibronectin-EDA promotes survival and prevents adverse remodeling and heart function deterioration after myocardial infarction. Circ Res. 2011, 108: 582-592. 10.1161/CIRCRESAHA.110.224428.
Article
CAS
PubMed
Google Scholar
Deten A, Holzl A, Leicht M, Barth W, Zimmer HG: Changes in extracellular matrix and in transforming growth factor beta isoforms after coronary artery ligation in rats. J Mol Cell Cardiol. 2001, 33: 1191-1207. 10.1006/jmcc.2001.1383.
Article
CAS
PubMed
Google Scholar
Mughal RS, Warburton P, O'Regan DJ, Ball SG, Turner NA, Porter KE: Peroxisome proliferator-activated receptor γ-independent effects of thiazolidinediones on human cardiac myofibroblast function. Clin Exp Pharmacol Physiol. 2009, 36: 478-486. 10.1111/j.1440-1681.2008.05088.x.
Article
CAS
PubMed
Google Scholar
Dobaczewski M, Chen W, Frangogiannis NG: Transforming growth factor (TGF)-β signaling in cardiac remodeling. J Mol Cell Cardiol. 2011, 51: 600-606. 10.1016/j.yjmcc.2010.10.033.
Article
PubMed Central
CAS
PubMed
Google Scholar
Buscemi L, Ramonet D, Klingberg F, Formey A, Smith-Clerc J, Meister JJ, Hinz B: The single-molecule mechanics of the latent TGF-β1 complex. Curr Biol. 2011, 21: 2046-2054. 10.1016/j.cub.2011.11.037.
Article
CAS
PubMed
Google Scholar
Kis K, Liu X, Hagood JS: Myofibroblast differentiation and survival in fibrotic disease. Expert Rev Mol Med. 2011, 13: e27.
Article
PubMed
Google Scholar
Du J, Xie J, Zhang Z, Tsujikawa H, Fusco D, Silverman D, Liang B, Yue L: TRPM7-mediated Ca2+ signals confer fibrogenesis in human atrial fibrillation. Circ Res. 2010, 106: 992-1003. 10.1161/CIRCRESAHA.109.206771.
Article
PubMed Central
CAS
PubMed
Google Scholar
Adapala RK, Thoppil R, Luther DJ, Paruchuri S, Meszaros JG, Chilian WM, Thodeti CK: TRPV4 channels mediate cardiac fibroblast differentiation by integrating mechanical and soluble signals. J Mol Cell Cardiol. 2013, 54: 45-52.
Article
PubMed Central
CAS
PubMed
Google Scholar
Davis J, Burr AR, Davis GF, Birnbaumer L, Molkentin JD: A TRPC6-dependent pathway for myofibroblast transdifferentiation and wound healing in vivo. Dev Cell. 2012, 23: 705-715. 10.1016/j.devcel.2012.08.017.
Article
PubMed Central
CAS
PubMed
Google Scholar
Van Nieuwenhoven FA, Turner NA: The role of cardiac fibroblasts in the transition from inflammation to fibrosis following myocardial infarction. Vasc Pharmacol. 2013, 58: 185-190.
Article
Google Scholar
Fedak PW, Bai L, Turnbull J, Ngu J, Narine K, Duff HJ: Cell therapy limits myofibroblast differentiation and structural cardiac remodeling: basic fibroblast growth factor-mediated paracrine mechanism. Circ Heart Fail. 2012, 5: 349-356. 10.1161/CIRCHEARTFAILURE.111.965889.
Article
CAS
PubMed
Google Scholar
Desmouliere A, Redard M, Darby I, Gabbiani G: Apoptosis mediates the decrease in cellularity during the transition between granulation tissue and scar. Am J Pathol. 1995, 146: 56-66.
PubMed Central
CAS
PubMed
Google Scholar
Takemura G, Ohno M, Hayakawa Y, Misao J, Kanoh M, Ohno A, Uno Y, Minatoguchi S, Fujiwara T, Fujiwara H: Role of apoptosis in the disappearance of infiltrated and proliferated interstitial cells after myocardial infarction. Circ Res. 1998, 82: 1130-1138. 10.1161/01.RES.82.11.1130.
Article
CAS
PubMed
Google Scholar
Dobaczewski M, Bujak M, Zymek P, Ren G, Entman ML, Frangogiannis NG: Extracellular matrix remodeling in canine and mouse myocardial infarcts. Cell Tissue Res. 2006, 324: 475-488. 10.1007/s00441-005-0144-6.
Article
CAS
PubMed
Google Scholar
Amerongen MJ, Bou-Gharios G, Popa E, Van AJ, Petersen AH, Van Dam GM, Van Luyn MJ, Harmsen MC: Bone marrow-derived myofibroblasts contribute functionally to scar formation after myocardial infarction. J Pathol. 2008, 214: 377-386. 10.1002/path.2281.
Article
PubMed
Google Scholar
Frangogiannis NG, Michael LH, Entman ML: Myofibroblasts in reperfused myocardial infarcts express the embryonic form of smooth muscle myosin heavy chain (SMemb). Cardiovasc Res. 2000, 48: 89-100. 10.1016/S0008-6363(00)00158-9.
Article
CAS
PubMed
Google Scholar
Willems IE, Havenith MG, De Mey JG, Daemen MJ: The alpha-smooth muscle actin-positive cells in healing human myocardial scars. Am J Pathol. 1994, 145: 868-875.
PubMed Central
CAS
PubMed
Google Scholar
Dobaczewski M, Gonzalez-Quesada C, Frangogiannis NG: The extracellular matrix as a modulator of the inflammatory and reparative response following myocardial infarction. J Mol Cell Cardiol. 2010, 48: 504-511. 10.1016/j.yjmcc.2009.07.015.
Article
PubMed Central
CAS
PubMed
Google Scholar
Li Y, Takemura G, Kosai K, Takahashi T, Okada H, Miyata S, Yuge K, Nagano S, Esaki M, Khai NC, Goto K, Mikami A, Maruyama R, Minatoguchi S, Fujiwara T, Fujiwara H: Critical roles for the Fas/Fas ligand system in postinfarction ventricular remodeling and heart failure. Circ Res. 2004, 95: 627-636. 10.1161/01.RES.0000141528.54850.bd.
Article
CAS
PubMed
Google Scholar
Wang H, Haeger SM, Kloxin AM, Leinwand LA, Anseth KS: Redirecting valvular myofibroblasts into dormant fibroblasts through light-mediated reduction in substrate modulus. PLoS One. 2012, 7: e39969-10.1371/journal.pone.0039969.
Article
PubMed Central
CAS
PubMed
Google Scholar
Cunnington RH, Wang B, Ghavami S, Bathe KL, Rattan SG, Dixon IM: Antifibrotic properties of c-Ski and its regulation of cardiac myofibroblast phenotype and contractility. Am J Physiol Cell Physiol. 2011, 300: C176-C186. 10.1152/ajpcell.00050.2010.
Article
CAS
PubMed
Google Scholar
Rosenkranz S: TGF-β1 and angiotensin networking in cardiac remodeling. Cardiovasc Res. 2004, 63: 423-432. 10.1016/j.cardiores.2004.04.030.
Article
CAS
PubMed
Google Scholar
Brown RD, Ambler SK, Mitchell MD, Long CS: The cardiac fibroblast: therapeutic target in myocardial remodeling and failure. Annu Rev Pharmacol Toxicol. 2005, 45: 657-687. 10.1146/annurev.pharmtox.45.120403.095802.
Article
CAS
PubMed
Google Scholar
Udali S, Guarini P, Moruzzi S, Choi SW, Friso S: Cardiovascular epigenetics: From DNA methylation to microRNAs. Mol Aspects Med. 2013, 10.1016/j.mam.2012.08.001. Epub ahead of print
Google Scholar
Bartel DP: MicroRNAs: target recognition and regulatory functions. Cell. 2009, 136: 215-233. 10.1016/j.cell.2009.01.002.
Article
PubMed Central
CAS
PubMed
Google Scholar
Mann J, Mann DA: Epigenetic regulation of wound healing and fibrosis. Curr Opin Rheumatol. 2013, 25: 101-107. 10.1097/BOR.0b013e32835b13e1.
Article
CAS
PubMed
Google Scholar
Orenes-Pinero E, Montoro-Garcia S, Patel JV, Valdes M, Marin F, Lip GY: Role of microRNAs in cardiac remodelling: new insights and future perspectives. Int J Cardiol. 2013, 10.1016/j.ijcard.2012.09.120. Epub ahead of print
Google Scholar
Ghosh AK, Nagpal V, Covington JW, Michaels MA, Vaughan DE: Molecular basis of cardiac endothelial-to-mesenchymal transition (EndMT): differential expression of microRNAs during EndMT. Cell Signal. 2012, 24: 1031-1036. 10.1016/j.cellsig.2011.12.024.
Article
PubMed Central
CAS
PubMed
Google Scholar
Kumarswamy R, Volkmann I, Jazbutyte V, Dangwal S, Park DH, Thum T: Transforming growth factor-beta-induced endothelial-to-mesenchymal transition is partly mediated by microRNA-21. Arterioscler Thromb Vasc Biol. 2012, 32: 361-369. 10.1161/ATVBAHA.111.234286.
Article
CAS
PubMed
Google Scholar
Thum T, Gross C, Fiedler J, Fischer T, Kissler S, Bussen M, Galuppo P, Just S, Rottbauer W, Frantz S, Castoldi M, Soutschek J, Koteliansky V, Rosenwald A, Basson MA, Licht JD, Pena JT, Rouhanifard SH, Muckenthaler MU, Tuschl T, Martin GR, Bauersachs J, Engelhardt S: MicroRNA-21 contributes to myocardial disease by stimulating MAP kinase signalling in fibroblasts. Nature. 2008, 456: 980-984. 10.1038/nature07511.
Article
CAS
PubMed
Google Scholar
Roy S, Khanna S, Hussain SR, Biswas S, Azad A, Rink C, Gnyawali S, Shilo S, Nuovo GJ, Sen CK: MicroRNA expression in response to murine myocardial infarction: miR-21 regulates fibroblast metalloprotease-2 via phosphatase and tensin homologue. Cardiovasc Res. 2009, 82: 21-29. 10.1093/cvr/cvp015.
Article
PubMed Central
CAS
PubMed
Google Scholar
van Rooij E, Sutherland LB, Thatcher JE, Dimaio JM, Naseem RH, Marshall WS, Hill JA, Olson EN: Dysregulation of microRNAs after myocardial infarction reveals a role of miR-29 in cardiac fibrosis. Proc Natl Acad Sci U S A. 2008, 105: 13027-13032. 10.1073/pnas.0805038105.
Article
PubMed Central
CAS
PubMed
Google Scholar
Park SY, Lee JH, Ha M, Nam JW, Kim VN: miR-29 miRNAs activate p53 by targeting p85 alpha and CDC42. Nat Struct Mol Biol. 2009, 16: 23-29. 10.1038/nsmb.1533.
Article
CAS
PubMed
Google Scholar
Wang J, Huang W, Xu R, Nie Y, Cao X, Meng J, Xu X, Hu S, Zheng Z: MicroRNA-24 regulates cardiac fibrosis after myocardial infarction. J Cell Mol Med. 2012, 16: 2150-2160. 10.1111/j.1582-4934.2012.01523.x.
Article
PubMed Central
CAS
PubMed
Google Scholar
Care A, Catalucci D, Felicetti F, Bonci D, Addario A, Gallo P, Bang ML, Segnalini P, Gu Y, Dalton ND, Elia L, Latronico MV, Høydal M, Autore C, Russo MA, Dorn GW, Ellingsen O, Ruiz-Lozano P, Peterson KL, Croce CM, Peschle C, Condorelli G: MicroRNA-133 controls cardiac hypertrophy. Nat Med. 2007, 13: 613-618. 10.1038/nm1582.
Article
CAS
PubMed
Google Scholar
Duisters RF, Tijsen AJ, Schroen B, Leenders JJ, Lentink V, Duisters RF, Tijsen AJ, Schroen B, Leenders JJ, Lentink V, VandM I, Herias V, Van Leeuwen RE, Schellings MW, Barenbrug P, Maessen JG, Heymans S, Pinto YM, Creemers EE: miR-133 and miR-30 regulate connective tissue growth factor: implications for a role of microRNAs in myocardial matrix remodeling. Circ Res. 2009, 104: 170-178. 10.1161/CIRCRESAHA.108.182535.
Article
CAS
PubMed
Google Scholar
Porter KE, Turner NA: Statins and myocardial remodelling: cell and molecular pathways. Expert Rev Mol Med. 2011, 13: e22.
Article
PubMed
Google Scholar
Frantz S, Hu K, Adamek A, Wolf J, Sallam A, Maier SK, Lonning S, Ling H, Ertl G, Bauersachs J: Transforming growth factor beta inhibition increases mortality and left ventricular dilatation after myocardial infarction. Basic Res Cardiol. 2008, 103: 485-492. 10.1007/s00395-008-0739-7.
Article
CAS
PubMed
Google Scholar
Ikeuchi M, Tsutsui H, Shiomi T, Matsusaka H, Matsushima S, Wen J, Kubota T, Takeshita A: Inhibition of TGF-beta signaling exacerbates early cardiac dysfunction but prevents late remodeling after infarction. Cardiovasc Res. 2004, 64: 526-535. 10.1016/j.cardiores.2004.07.017.
Article
CAS
PubMed
Google Scholar
Dobaczewski M, Bujak M, Li N, Gonzalez-Quesada C, Mendoza LH, Wang XF, Frangogiannis NG: Smad3 signaling critically regulates fibroblast phenotype and function in healing myocardial infarction. Circ Res. 2010, 107: 418-428. 10.1161/CIRCRESAHA.109.216101.
Article
PubMed Central
CAS
PubMed
Google Scholar
Cunnington RH, Nazari M, Dixon IM: c-Ski, Smurf2, and Arkadia as regulators of TGF-beta signaling: new targets for managing myofibroblast function and cardiac fibrosis. Can J Physiol Pharmacol. 2009, 87: 764-772. 10.1139/Y09-076.
Article
CAS
PubMed
Google Scholar
Czubryt MP: Common threads in cardiac fibrosis, infarct scar formation, and wound healing. Fibrogenesis Tissue Repair. 2012, 5: 19-10.1186/1755-1536-5-19.
Article
PubMed Central
PubMed
Google Scholar
Tamaoki M, Imanaka-Yoshida K, Yokoyama K, Nishioka T, Inada H, Hiroe M, Sakakura T, Yoshida T: Tenascin-C regulates recruitment of myofibroblasts during tissue repair after myocardial injury. Am J Pathol. 2005, 167: 71-80. 10.1016/S0002-9440(10)62954-9.
Article
PubMed Central
CAS
PubMed
Google Scholar
Nishioka T, Onishi K, Shimojo N, Nagano Y, Matsusaka H, Ikeuchi M, Ide T, Tsutsui H, Hiroe M, Yoshida T, Imanaka-Yoshida K: Tenascin-C may aggravate left ventricular remodeling and function after myocardial infarction in mice. Am J Physiol Heart Circ Physiol. 2010, 298: H1072-H1078. 10.1152/ajpheart.00255.2009.
Article
CAS
PubMed
Google Scholar
Shimazaki M, Nakamura K, Kii I, Kashima T, Amizuka N, Li M, Saito M, Fukuda K, Nishiyama T, Kitajima S, Saga Y, Fukayama M, Sata M, Kudo A: Periostin is essential for cardiac healing after acute myocardial infarction. J Exp Med. 2008, 205: 295-303. 10.1084/jem.20071297.
Article
PubMed Central
CAS
PubMed
Google Scholar
Oka T, Xu J, Kaiser RA, Melendez J, Hambleton M, Sargent MA, Lorts A, Brunskill EW, Dorn GW, Conway SJ, Aronow BJ, Robbins J, Molkentin JD: Genetic manipulation of periostin expression reveals a role in cardiac hypertrophy and ventricular remodeling. Circ Res. 2007, 101: 313-321. 10.1161/CIRCRESAHA.107.149047.
Article
PubMed Central
CAS
PubMed
Google Scholar
Frangogiannis NG, Ren G, Dewald O, Zymek P, Haudek S, Koerting A, Winkelmann K, Michael LH, Lawler J, Entman ML: Critical role of endogenous thrombospondin-1 in preventing expansion of healing myocardial infarcts. Circulation. 2005, 111: 2935-2942. 10.1161/CIRCULATIONAHA.104.510354.
Article
CAS
PubMed
Google Scholar
Xia Y, Dobaczewski M, Gonzalez-Quesada C, Chen W, Biernacka A, Li N, Lee DW, Frangogiannis NG: Endogenous thrombospondin 1 protects the pressure-overloaded myocardium by modulating fibroblast phenotype and matrix metabolism. Hypertension. 2011, 58: 902-911. 10.1161/HYPERTENSIONAHA.111.175323.
Article
PubMed Central
CAS
PubMed
Google Scholar
Ohnishi H, Oka T, Kusachi S, Nakanishi T, Takeda K, Nakahama M, Doi M, Murakami T, Ninomiya Y, Takigawa M, Tsuji T: Increased expression of connective tissue growth factor in the infarct zone of experimentally induced myocardial infarction in rats. J Mol Cell Cardiol. 1998, 30: 2411-2422. 10.1006/jmcc.1998.0799.
Article
CAS
PubMed
Google Scholar
Daniels A, Van Bilsen M, Goldschmeding R, van Der Vusse GJ, van Nieuwenhoven FA: Connective tissue growth factor and cardiac fibrosis. Acta Physiol (Oxf). 2009, 195: 321-338. 10.1111/j.1748-1716.2008.01936.x.
Article
CAS
Google Scholar
Schellings MW, Vanhoutte D, Swinnen M, Cleutjens JP, Debets J, Van Leeuwen RE, D'Hooge J, Van de Werf F, Carmeliet P, Pinto YM, Sage EH, Heymans S: Absence of SPARC results in increased cardiac rupture and dysfunction after acute myocardial infarction. J Exp Med. 2009, 206: 113-123.
Article
PubMed Central
CAS
PubMed
Google Scholar
McCurdy SM, Dai Q, Zhang J, Zamilpa R, Ramirez TA, Dayah T, Nguyen N, Jin YF, Bradshaw AD, Lindsey ML: SPARC mediates early extracellular matrix remodeling following myocardial infarction. Am J Physiol Heart Circ Physiol. 2011, 301: H497-H505. 10.1152/ajpheart.01070.2010.
Article
PubMed Central
CAS
PubMed
Google Scholar
Hermans KC, Daskalopoulos EP, Blankesteijn WM: Interventions in Wnt signaling as a novel therapeutic approach to improve myocardial infarct healing. Fibrogenesis Tissue Repair. 2012, 5: 16-10.1186/1755-1536-5-16.
Article
PubMed Central
CAS
PubMed
Google Scholar
Okamura Y, Watari M, Jerud ES, Young DW, Ishizaka ST, Rose J, Chow JC, Strauss JF: The extra domain A of fibronectin activates Toll-like receptor 4. J Biol Chem. 2001, 276: 10229-10233. 10.1074/jbc.M100099200.
Article
CAS
PubMed
Google Scholar
Kuwahara K, Kinoshita H, Kuwabara Y, Nakagawa Y, Usami S, Minami T, Yamada Y, Fujiwara M, Nakao K: Myocardin-related transcription factor A is a common mediator of mechanical stress- and neurohumoral stimulation-induced cardiac hypertrophic signaling leading to activation of brain natriuretic peptide gene expression. Mol Cell Biol. 2010, 30: 4134-4148. 10.1128/MCB.00154-10.
Article
PubMed Central
CAS
PubMed
Google Scholar
Small EM, Thatcher JE, Sutherland LB, Kinoshita H, Gerard RD, Richardson JA, Dimaio JM, Sadek H, Kuwahara K, Olson EN: Myocardin-related transcription factor-α controls myofibroblast activation and fibrosis in response to myocardial infarction. Circ Res. 2010, 107: 294-304. 10.1161/CIRCRESAHA.110.223172.
Article
PubMed Central
CAS
PubMed
Google Scholar
Ekert JE, Murray LA, Das AM, Sheng H, Giles-Komar J, Rycyzyn MA: Chemokine (C-C motif) ligand 2 mediates direct and indirect fibrotic responses in human and murine cultured fibrocytes. Fibrogenesis Tissue Repair. 2011, 4: 23-10.1186/1755-1536-4-23.
Article
PubMed Central
CAS
PubMed
Google Scholar
Morimoto H, Takahashi M, Izawa A, Ise H, Hongo M, Kolattukudy PE, Ikeda U: Cardiac overexpression of monocyte chemoattractant protein-1 in transgenic mice prevents cardiac dysfunction and remodeling after myocardial infarction. Circ Res. 2006, 99: 891-899. 10.1161/01.RES.0000246113.82111.2d.
Article
CAS
PubMed
Google Scholar
Haudek SB, Cheng J, Du J, Wang Y, Hermosillo-Rodriguez J, Trial J, Taffet GE, Entman ML: Monocytic fibroblast precursors mediate fibrosis in angiotensin-II-induced cardiac hypertrophy. J Mol Cell Cardiol. 2010, 49: 499-507. 10.1016/j.yjmcc.2010.05.005.
Article
PubMed Central
CAS
PubMed
Google Scholar
Haudek SB, Gupta D, Dewald O, Schwartz RJ, Wei L, Trial J, Entman ML: Rho kinase-1 mediates cardiac fibrosis by regulating fibroblast precursor cell differentiation. Cardiovasc Res. 2009, 83: 511-518. 10.1093/cvr/cvp135.
Article
PubMed Central
CAS
PubMed
Google Scholar
Frangogiannis NG, Dewald O, Xia Y, Ren G, Haudek S, Leucker T, Kraemer D, Taffet G, Rollins BJ, Entman ML: Critical role of monocyte chemoattractant protein-1/CC chemokine ligand 2 in the pathogenesis of ischemic cardiomyopathy. Circulation. 2007, 115: 584-592. 10.1161/CIRCULATIONAHA.106.646091.
Article
CAS
PubMed
Google Scholar
Boyle AJ, Yeghiazarians Y, Shih H, Hwang J, Ye J, Sievers R, Zheng D, Palasubramaniam J, Palasubramaniam D, Karschimkus C, Whitbourn R, Jenkins A, Wilson AM: Myocardial production and release of MCP-1 and SDF-1 following myocardial infarction: differences between mice and man. J Transl Med. 2011, 9: 150-10.1186/1479-5876-9-150.
Article
PubMed Central
CAS
PubMed
Google Scholar
Jessup M, Brozena S: Heart failure. N Engl J Med. 2003, 348: 2007-2018. 10.1056/NEJMra021498.
Article
PubMed
Google Scholar
Montgomery RL, van Rooij E: Therapeutic advances in MicroRNA targeting. J Cardiovasc Pharmacol. 2011, 57: 1-7. 10.1097/FJC.0b013e3181f603d0.
Article
CAS
PubMed
Google Scholar
van Rooij E, Purcell AL, Levin AA: Developing microRNA therapeutics. Circ Res. 2012, 110: 496-507. 10.1161/CIRCRESAHA.111.247916.
Article
CAS
PubMed
Google Scholar