Skip to main content

Non-alcoholic fatty liver disease (NAFLD): a tale of fat and sugar?

Abstract

The global diffusion of the so-called Western diet, which is enriched in fat and carbohydrates, such as fructose, has been proposed to be an underlying cause of the increased prevalence of metabolic conditions, including non-alcoholic fatty liver disease (NAFLD). This Smart Card summarizes the main metabolic and hepatic histological features of rodent models fed with diets combining high fat and fructose.

Introduction

Non-alcoholic fatty liver disease (NAFLD), a condition regarded as the hepatic manifestation of the metabolic syndrome, currently represents the most common cause of chronic liver disease [1]. The condition ranges from simple hepatic fat accumulation (steatosis) to non-alcoholic steatohepatitis, where fat is accompanied by hepatocyte injury, and necroinflammation. This condition poses an increased risk of cirrhosis and hepatocellular carcinoma [1]. The dramatic increase in prevalence of obesity, metabolic syndrome, and NAFLD has been linked to the global diffusion of the Western diet, characterized by excess caloric intake due to increased consumption of processed food and beverages, coupled with a more sedentary lifestyle [2, 3]. This has led to a significant increase in sucrose and high-fructose corn syrup consumption, both of which contain similar amounts of glucose and fructose [4]. In the USA, for example, fructose consumption has more than doubled in the last three decades [3]. Excessive fructose consumption has been linked to an increased prevalence of metabolic diseases and growing evidence suggests that it may also contribute to the development and severity of NAFLD by exacerbating fat deposition, inflammation, and, possibly fibrosis [5]. Mechanistically, fructose may contribute to NAFLD by promoting de-novo lipogenesis, insulin resistance, oxidative stress, bacterial overgrowth, and inflammation [37]. The mechanisms responsible for transition to non-alcoholic steatohepatitis are still not completely understood, in part because of the scarcity of animal models that can fully replicate both the histological and metabolic features of human non-alcoholic steatohepatitis [8]. As fructose is likely to act as a dietary ‘second hit’ [5], effort has recently been put into developing novel experimental models to recapitulate the Western diet by combining high-fat or high-energy diets and fructose. The aim of this Smart Card is to provide a synthetic and exhaustive source for rapid consultation of the currently proposed rodent models of diets combining high fat and fructose, summarizing the metabolic and hepatic consequences of such combinations (Table 1).

Table 1 Metabolic and hepatic features of rodent models fed with diets combining high fat and fructose

Abbreviations

GTT-AUC:

Glucose tolerance test: area under the curve

HOMA-IR:

Homeostasis model of assessment - insulin resistance

NAFLD:

Non-alcoholic fatty liver disease

w/v:

Weight by volume.

References

  1. 1.

    Chalasani N, Younossi Z, Lavine JE, Diehl AM, Brunt EM, Cusi K, Charlton M, Sanyal AJ: The diagnosis and management of non-alcoholic fatty liver disease: practice guideline by the American Gastroenterological Association, American Association for the Study of Liver Diseases, and American College of Gastroenterology. Gastroenterology. 2012, 142: 1592-1609. 10.1053/j.gastro.2012.04.001.

    Article  PubMed  Google Scholar 

  2. 2.

    Anania FA: Non-alcoholic fatty liver disease and fructose: bad for us, better for mice. J Hepatol. 2011, 55: 218-220. 10.1016/j.jhep.2011.01.029.

    PubMed Central  Article  PubMed  Google Scholar 

  3. 3.

    Lim JS, Mietus-Snyder M, Valente A, Schwarz JM, Lustig RH: The role of fructose in the pathogenesis of NAFLD and the metabolic syndrome. Nat Rev Gastroenterol Hepatol. 2010, 7: 251-264. 10.1038/nrgastro.2010.41.

    CAS  Article  PubMed  Google Scholar 

  4. 4.

    Samuel VT: Fructose induced lipogenesis: from sugar to fat to insulin resistance. Trends Endocrinol Metab. 2011, 22: 60-65. 10.1016/j.tem.2010.10.003.

    CAS  Article  PubMed  Google Scholar 

  5. 5.

    Vos MB, Lavine JE: Dietary fructose in nonalcoholic fatty liver disease. Hepatology. 2013, 57: 2525-2531. 10.1002/hep.26299.

    CAS  Article  PubMed  Google Scholar 

  6. 6.

    Nomura K, Yamanouchi T: The role of fructose-enriched diets in mechanisms of nonalcoholic fatty liver disease. J Nutr Biochem. 2012, 23: 203-208. 10.1016/j.jnutbio.2011.09.006.

    CAS  Article  PubMed  Google Scholar 

  7. 7.

    Yilmaz Y: Review article: fructose in non-alcoholic fatty liver disease. Aliment Pharmacol Ther. 2012, 35: 1135-1144. 10.1111/j.1365-2036.2012.05080.x.

    CAS  Article  PubMed  Google Scholar 

  8. 8.

    Charlton M, Krishnan A, Viker K, Sanderson S, Cazanave S, McConico A, Masuoko H, Gores G: Fast food diet mouse: novel small animal model of NASH with ballooning, progressive fibrosis, and high physiological fidelity to the human condition. Am J Physiol Gastrointest Liver Physiol. 2011, 301: G825-G834. 10.1152/ajpgi.00145.2011.

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  9. 9.

    Tetri LH, Basaranoglu M, Brunt EM, Yerian LM, Neuschwander-Tetri BA: Severe NAFLD with hepatic necroinflammatory changes in mice fed trans fats and a high-fructose corn syrup equivalent. Am J Physiol Gastrointest Liver Physiol. 2008, 295: G987-G995. 10.1152/ajpgi.90272.2008.

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  10. 10.

    Kohli R, Kirby M, Xanthakos SA, Softic S, Feldstein AE, Saxena V, Tang PH, Miles L, Miles MV, Balistreri WF, Woods SC, Seeley RJ: High-fructose, medium chain trans fat diet induces liver fibrosis and elevates plasma coenzyme Q9 in a novel murine model of obesity and nonalcoholic steatohepatitis. Hepatology. 2010, 52: 934-944. 10.1002/hep.23797.

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  11. 11.

    Wada T, Kenmochi H, Miyashita Y, Sasaki M, Ojima M, Sasahara M, Koya D, Tsuneki H, Sasaoka T: Spironolactone improves glucose and lipid metabolism by ameliorating hepatic steatosis and inflammation and suppressing enhanced gluconeogenesis induced by high-fat and high-fructose diet. Endocrinology. 2010, 151: 2040-2049. 10.1210/en.2009-0869.

    CAS  Article  PubMed  Google Scholar 

  12. 12.

    Feillet-Coudray C, Sutra T, Fouret G, Ramos J, Wrutniak-Cabello C, Cabello G, Cristol JP, Coudray C: Oxidative stress in rats fed a high-fat high-sucrose diet and preventive effect of polyphenols: Involvement of mitochondrial and NAD(P)H oxidase systems. Free Radic Biol Med. 2009, 46: 624-632. 10.1016/j.freeradbiomed.2008.11.020.

    CAS  Article  PubMed  Google Scholar 

  13. 13.

    Sohet FM, Neyrinck AM, Pachikian BD, de Backer FC, Bindels LB, Niklowitz P, Menke T, Cani PD, Delzenne NM: Coenzyme Q10 supplementation lowers hepatic oxidative stress and inflammation associated with diet-induced obesity in mice. Biochem Pharmacol. 2009, 78: 1391-1400. 10.1016/j.bcp.2009.07.008.

    CAS  Article  PubMed  Google Scholar 

  14. 14.

    Alisi A, Da SL, Bruscalupi G, Piemonte F, Panera N, De VR, Leoni S, Bottazzo GF, Masotti A, Nobili V: Mirnome analysis reveals novel molecular determinants in the pathogenesis of diet-induced nonalcoholic fatty liver disease. Lab Invest. 2011, 91: 283-293. 10.1038/labinvest.2010.166.

    CAS  Article  PubMed  Google Scholar 

  15. 15.

    Aragno M, Tomasinelli CE, Vercellinatto I, Catalano MG, Collino M, Fantozzi R, Danni O, Boccuzzi G: SREBP-1c in nonalcoholic fatty liver disease induced by Western-type high-fat diet plus fructose in rats. Free Radic Biol Med. 2009, 47: 1067-1074. 10.1016/j.freeradbiomed.2009.07.016.

    CAS  Article  PubMed  Google Scholar 

  16. 16.

    Axelsen LN, Lademann JB, Petersen JS, Holstein-Rathlou NH, Ploug T, Prats C, Pedersen HD, Kjolbye AL: Cardiac and metabolic changes in long-term high fructose-fat fed rats with severe obesity and extensive intramyocardial lipid accumulation. Am J Physiol Regul Integr Comp Physiol. 2010, 298: R1560-R1570. 10.1152/ajpregu.00392.2009.

    CAS  Article  PubMed  Google Scholar 

  17. 17.

    Roth CL, Elfers CT, Figlewicz DP, Melhorn SJ, Morton GJ, Hoofnagle A, Yeh MM, Nelson JE, Kowdley KV: Vitamin D deficiency in obese rats exacerbates nonalcoholic fatty liver disease and increases hepatic resistin and toll-like receptor activation. Hepatology. 2012, 55: 1103-1111. 10.1002/hep.24737.

    CAS  Article  PubMed  Google Scholar 

  18. 18.

    Poudyal H, Campbell F, Brown L: Olive leaf extract attenuates cardiac, hepatic, and metabolic changes in high carbohydrate-, high fat-fed rats. J Nutr. 2010, 140: 946-953. 10.3945/jn.109.117812.

    CAS  Article  PubMed  Google Scholar 

  19. 19.

    Tsuchiya H, Ebata Y, Sakabe T, Hama S, Kogure K, Shiota G: High-fat, high-fructose diet induces hepatic iron overload via a hepcidin-independent mechanism prior to the onset of liver steatosis and insulin resistance in mice. Metabolism. 2013, 62: 62-69. 10.1016/j.metabol.2012.06.008.

    CAS  Article  PubMed  Google Scholar 

  20. 20.

    Kawasaki T, Igarashi K, Koeda T, Sugimoto K, Nakagawa K, Hayashi S, Yamaji R, Inui H, Fukusato T, Yamanouchi T: Rats fed fructose-enriched diets have characteristics of nonalcoholic hepatic steatosis. J Nutr. 2009, 139: 2067-2071. 10.3945/jn.109.105858.

    CAS  Article  PubMed  Google Scholar 

  21. 21.

    Poudyal H, Panchal SK, Ward LC, Waanders J, Brown L: Chronic high-carbohydrate, high-fat feeding in rats induces reversible metabolic, cardiovascular, and liver changes. Am J Physiol Endocrinol Metab. 2012, 302: E1472-E1482. 10.1152/ajpendo.00102.2012.

    CAS  Article  PubMed  Google Scholar 

  22. 22.

    Panchal SK, Wong WY, Kauter K, Ward LC, Brown L: Caffeine attenuates metabolic syndrome in diet-induced obese rats. Nutrition. 2012, 28: 1055-1062. 10.1016/j.nut.2012.02.013.

    CAS  Article  PubMed  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Lisa Longato.

Additional information

Competing interests

The author declares that she has no competing interest.

Rights and permissions

This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Reprints and Permissions

About this article

Cite this article

Longato, L. Non-alcoholic fatty liver disease (NAFLD): a tale of fat and sugar?. Fibrogenesis Tissue Repair 6, 14 (2013). https://doi.org/10.1186/1755-1536-6-14

Download citation

Keywords

  • Fructose
  • High-fat diet
  • High-fructose corn syrup
  • Mice
  • NAFLD
  • Non-alcoholic steatohepatitis
  • Rats
  • Western diet