Brenner BM, Rector F: Brenner and Rector's The Kidney. 2008, Philidelphia: Saunders, 8
Google Scholar
Zeisberg M, Kalluri R: Reversal of experimental renal fibrosis by BMP7 provides insights into novel therapeutic strategies for chronic kidney disease. Pediatr Nephrol. 2008, 23 (9): 1395-1398. 10.1007/s00467-008-0818-x.
Article
PubMed
Google Scholar
Kalluri R, Weinberg RA: The basics of epithelial-mesenchymal transition. J Clin Invest. 2009, 119 (6): 1420-1428. 10.1172/JCI39104.
Article
PubMed Central
CAS
PubMed
Google Scholar
Bedi S, Vidyasagar A, Djamali A: Epithelial-to-mesenchymal transition and chronic allograft tubulointerstitial fibrosis. Transplant Rev (Orlando). 2008, 22 (1): 1-5.
Article
PubMed Central
PubMed
Google Scholar
Savagner P: Leaving the neighborhood: molecular mechanisms involved during epithelial-mesenchymal transition. Bioessays. 2001, 23 (10): 912-923. 10.1002/bies.1132.
Article
CAS
PubMed
Google Scholar
Thiery JP: Epithelial-mesenchymal transitions in development and pathologies. Curr Opin Cell Biol. 2003, 15 (6): 740-746. 10.1016/j.ceb.2003.10.006.
Article
CAS
PubMed
Google Scholar
Moustakas A, Heldin CH: Signaling networks guiding epithelial-mesenchymal transitions during embryogenesis and cancer progression. Cancer Sci. 2007, 98 (10): 1512-1520. 10.1111/j.1349-7006.2007.00550.x.
Article
CAS
PubMed
Google Scholar
Zeisberg M, Maeshima Y, Mosterman B, Kalluri R: Renal fibrosis. Extracellular matrix microenvironment regulates migratory behavior of activated tubular epithelial cells. Am J Pathol. 2002, 160 (6): 2001-2008. 10.1016/S0002-9440(10)61150-9.
Article
PubMed Central
CAS
PubMed
Google Scholar
Yang J, Liu Y: Dissection of key events in tubular epithelial to myofibroblast transition and its implications in renal interstitial fibrosis. Am J Pathol. 2001, 159 (4): 1465-1475. 10.1016/S0002-9440(10)62533-3.
Article
PubMed Central
CAS
PubMed
Google Scholar
Turley EA, Veiseh M, Radisky DC, Bissell MJ: Mechanisms of disease: epithelial-mesenchymal transition--does cellular plasticity fuel neoplastic progression?. Nat Clin Pract Oncol. 2008, 5 (5): 280-290.
Article
PubMed Central
CAS
PubMed
Google Scholar
Gal A, Sjoblom T, Fedorova L, Imreh S, Beug H, Moustakas A: Sustained TGF beta exposure suppresses Smad and non-Smad signalling in mammary epithelial cells, leading to EMT and inhibition of growth arrest and apoptosis. Oncogene. 2008, 27 (9): 1218-1230. 10.1038/sj.onc.1210741.
Article
CAS
PubMed
Google Scholar
Tse JC, Kalluri R: Mechanisms of metastasis: epithelial-to-mesenchymal transition and contribution of tumor microenvironment. J Cell Biochem. 2007, 101 (4): 816-829. 10.1002/jcb.21215.
Article
CAS
PubMed
Google Scholar
Ozdamar B, Bose R, Barrios-Rodiles M, Wang HR, Zhang Y, Wrana JL: Regulation of the polarity protein Par6 by TGFbeta receptors controls epithelial cell plasticity. Science. 2005, 307 (5715): 1603-1609. 10.1126/science.1105718.
Article
CAS
PubMed
Google Scholar
Massague J: TGFbeta in Cancer. Cell. 2008, 134 (2): 215-230. 10.1016/j.cell.2008.07.001.
Article
PubMed Central
CAS
PubMed
Google Scholar
Massague J, Gomis RR: The logic of TGFbeta signaling. FEBS Lett. 2006, 580 (12): 2811-2820. 10.1016/j.febslet.2006.04.033.
Article
CAS
PubMed
Google Scholar
Jayaraman L, Massague J: Distinct oligomeric states of SMAD proteins in the transforming growth factor-beta pathway. J Biol Chem. 2000, 275 (52): 40710-40717. 10.1074/jbc.M005799200.
Article
CAS
PubMed
Google Scholar
Chacko BM, Qin BY, Tiwari A, Shi G, Lam S, Hayward LJ, De Caestecker M, Lin K: Structural basis of heteromeric smad protein assembly in TGF-beta signaling. Mol Cell. 2004, 15 (5): 813-823. 10.1016/j.molcel.2004.07.016.
Article
CAS
PubMed
Google Scholar
Inman GJ, Nicolas FJ, Callahan JF, Harling JD, Gaster LM, Reith AD, Laping NJ, Hill CS: SB-431542 is a potent and specific inhibitor of transforming growth factor-beta superfamily type I activin receptor-like kinase (ALK) receptors ALK4, ALK5, and ALK7. Mol Pharmacol. 2002, 62 (1): 65-74. 10.1124/mol.62.1.65.
Article
CAS
PubMed
Google Scholar
Halder SK, Beauchamp RD, Datta PK: A specific inhibitor of TGF-beta receptor kinase, SB-431542, as a potent antitumor agent for human cancers. Neoplasia. 2005, 7 (5): 509-521. 10.1593/neo.04640.
Article
PubMed Central
CAS
PubMed
Google Scholar
Piek E, Moustakas A, Kurisaki A, Heldin CH, ten Dijke P: TGF-(beta) type I receptor/ALK-5 and Smad proteins mediate epithelial to mesenchymal transdifferentiation in NMuMG breast epithelial cells. J Cell Sci. 1999, 112 (Pt 24): 4557-4568.
CAS
PubMed
Google Scholar
Lan HY, Mu W, Tomita N, Huang XR, Li JH, Zhu HJ, Morishita R, Johnson RJ: Inhibition of renal fibrosis by gene transfer of inducible Smad7 using ultrasound-microbubble system in rat UUO model. J Am Soc Nephrol. 2003, 14 (6): 1535-1548. 10.1097/01.ASN.0000067632.04658.B8.
Article
CAS
PubMed
Google Scholar
Zavadil J, Cermak L, Soto-Nieves N, Bottinger EP: Integration of TGF-beta/Smad and Jagged1/Notch signalling in epithelial-to-mesenchymal transition. Embo J. 2004, 23 (5): 1155-1165. 10.1038/sj.emboj.7600069.
Article
PubMed Central
CAS
PubMed
Google Scholar
Kalluri R, Neilson EG: Epithelial-mesenchymal transition and its implications for fibrosis. J Clin Invest. 2003, 112 (12): 1776-1784.
Article
PubMed Central
CAS
PubMed
Google Scholar
Zeisberg M, Kalluri R: The role of epithelial-to-mesenchymal transition in renal fibrosis. J Mol Med. 2004, 82 (3): 175-181. 10.1007/s00109-003-0517-9.
Article
PubMed
Google Scholar
Derynck R, Zhang YE: Smad-dependent and Smad-independent pathways in TGF-beta family signalling. Nature. 2003, 425 (6958): 577-584. 10.1038/nature02006.
Article
CAS
PubMed
Google Scholar
Massague J, Seoane J, Wotton D: Smad transcription factors. Genes Dev. 2005, 19 (23): 2783-2810. 10.1101/gad.1350705.
Article
CAS
PubMed
Google Scholar
Boden SD, Zdeblick TA, Sandhu HS, Heim SE: The use of rhBMP-2 in interbody fusion cages. Definitive evidence of osteoinduction in humans: a preliminary report. Spine (Phila Pa 1976). 2000, 25 (3): 376-381. 10.1097/00007632-200002010-00020.
Article
CAS
Google Scholar
Zeisberg M, Hanai J, Sugimoto H, Mammoto T, Charytan D, Strutz F, Kalluri R: BMP-7 counteracts TGF-beta1-induced epithelial-to-mesenchymal transition and reverses chronic renal injury. Nat Med. 2003, 9 (7): 964-968. 10.1038/nm888.
Article
CAS
PubMed
Google Scholar
Itoh S, Thorikay M, Kowanetz M, Moustakas A, Itoh F, Heldin CH, ten Dijke P: Elucidation of Smad requirement in transforming growth factor-beta type I receptor-induced responses. J Biol Chem. 2003, 278 (6): 3751-3761. 10.1074/jbc.M208258200.
Article
CAS
PubMed
Google Scholar
Yang J, Dai C, Liu Y: A Novel Mechanism by which Hepatocyte Growth Factor Blocks Tubular Epithelial to Mesenchymal Transition. J Am Soc Nephrol. 2005, 16 (1): 68-78.
Article
CAS
PubMed
Google Scholar
Yang J, Dai C, Liu Y: Hepatocyte growth factor suppresses renal interstitial myofibroblast activation and intercepts Smad signal transduction. Am J Pathol. 2003, 163 (2): 621-632. 10.1016/S0002-9440(10)63689-9.
Article
PubMed Central
CAS
PubMed
Google Scholar
Mizuno S, Nakamura T: Suppressions of chronic glomerular injuries and TGF-beta 1 production by HGF in attenuation of murine diabetic nephropathy. Am J Physiol Renal Physiol. 2004, 286 (1): F134-143.
Article
CAS
PubMed
Google Scholar
Yang J, Liu Y: Delayed administration of hepatocyte growth factor reduces renal fibrosis in obstructive nephropathy. Am J Physiol Renal Physiol. 2003, 284 (2): F349-357.
Article
CAS
PubMed
Google Scholar
Janda E, Lehmann K, Killisch I, Jechlinger M, Herzig M, Downward J, Beug H, Grunert S: Ras and TGF[beta] cooperatively regulate epithelial cell plasticity and metastasis: dissection of Ras signaling pathways. J Cell Biol. 2002, 156 (2): 299-313. 10.1083/jcb.200109037.
Article
PubMed Central
CAS
PubMed
Google Scholar
Xie L, Law BK, Chytil AM, Brown KA, Aakre ME, Moses HL: Activation of the Erk pathway is required for TGF-beta1-induced EMT in vitro. Neoplasia. 2004, 6 (5): 603-610. 10.1593/neo.04241.
Article
PubMed Central
CAS
PubMed
Google Scholar
Bakin AV, Rinehart C, Tomlinson AK, Arteaga CL: p38 mitogen-activated protein kinase is required for TGFbeta-mediated fibroblastic transdifferentiation and cell migration. J Cell Sci. 2002, 115 (Pt 15): 3193-3206.
CAS
PubMed
Google Scholar
Brown K, Bhowmick NA: Linking TGF-beta-mediated Cdc25A inhibition and cytoskeletal regulation through RhoA/p160(ROCK) signaling. Cell Cycle. 2004, 3 (4): 408-410.
Article
CAS
PubMed
Google Scholar
Valcourt U, Kowanetz M, Niimi H, Heldin CH, Moustakas A: TGF-beta and the Smad signaling pathway support transcriptomic reprogramming during epithelial-mesenchymal cell transition. Mol Biol Cell. 2005, 16 (4): 1987-2002. 10.1091/mbc.E04-08-0658.
Article
PubMed Central
CAS
PubMed
Google Scholar
Grande M, Franzen A, Karlsson JO, Ericson LE, Heldin NE, Nilsson M: Transforming growth factor-beta and epidermal growth factor synergistically stimulate epithelial to mesenchymal transition (EMT) through a MEK-dependent mechanism in primary cultured pig thyrocytes. J Cell Sci. 2002, 115 (Pt 22): 4227-4236.
Article
CAS
PubMed
Google Scholar
Das S, Becker BN, Hoffmann FM, Mertz JE: Complete reversal of epithelial to mesenchymal transition requires inhibition of both ZEB expression and the Rho pathway. BMC Cell Biol. 2009, 10: 94-10.1186/1471-2121-10-94.
Article
PubMed Central
PubMed
Google Scholar
Eger A, Stockinger A, Park J, Langkopf E, Mikula M, Gotzmann J, Mikulits W, Beug H, Foisner R: beta-Catenin and TGFbeta signalling cooperate to maintain a mesenchymal phenotype after FosER-induced epithelial to mesenchymal transition. Oncogene. 2004, 23 (15): 2672-2680.
Article
CAS
PubMed
Google Scholar
Batlle E, Sancho E, Franci C, Dominguez D, Monfar M, Baulida J, Garcia De Herreros A: The transcription factor snail is a repressor of E-cadherin gene expression in epithelial tumour cells. Nat Cell Biol. 2000, 2 (2): 84-89. 10.1038/35000034.
Article
CAS
PubMed
Google Scholar
Moreno-Bueno G, Cubillo E, Sarrio D, Peinado H, Rodriguez-Pinilla SM, Villa S, Bolos V, Jorda M, Fabra A, Portillo F, et al: Genetic profiling of epithelial cells expressing E-cadherin repressors reveals a distinct role for Snail, Slug, and E47 factors in epithelial-mesenchymal transition. Cancer Res. 2006, 66 (19): 9543-9556. 10.1158/0008-5472.CAN-06-0479.
Article
CAS
PubMed
Google Scholar
Shirakihara T, Saitoh M, Miyazono K: Differential regulation of epithelial and mesenchymal markers by deltaEF1 proteins in epithelial mesenchymal transition induced by TGF-beta. Mol Biol Cell. 2007, 18 (9): 3533-3544. 10.1091/mbc.E07-03-0249.
Article
PubMed Central
CAS
PubMed
Google Scholar
Aigner K, Descovich L, Mikula M, Sultan A, Dampier B, Bonne S, van Roy F, Mikulits W, Schreiber M, Brabletz T, et al: The transcription factor ZEB1 (deltaEF1) represses Plakophilin 3 during human cancer progression. FEBS Lett. 2007, 581 (8): 1617-1624. 10.1016/j.febslet.2007.03.026.
Article
PubMed Central
CAS
PubMed
Google Scholar
Eger A, Aigner K, Sonderegger S, Dampier B, Oehler S, Schreiber M, Berx G, Cano A, Beug H, Foisner R: DeltaEF1 is a transcriptional repressor of E-cadherin and regulates epithelial plasticity in breast cancer cells. Oncogene. 2005, 24 (14): 2375-2385. 10.1038/sj.onc.1208429.
Article
CAS
PubMed
Google Scholar
Peinado H, Olmeda D, Cano A: Snail, Zeb and bHLH factors in tumour progression: an alliance against the epithelial phenotype?. Nat Rev Cancer. 2007, 7 (6): 415-428. 10.1038/nrc2131.
Article
CAS
PubMed
Google Scholar
Vandewalle C, Van Roy F, Berx G: The role of the ZEB family of transcription factors in development and disease. Cell Mol Life Sci. 2009, 66 (5): 773-787. 10.1007/s00018-008-8465-8.
Article
CAS
PubMed
Google Scholar
Van de Putte T, Maruhashi M, Francis A, Nelles L, Kondoh H, Huylebroeck D, Higashi Y: Mice lacking ZFHX1B, the gene that codes for Smad-interacting protein-1, reveal a role for multiple neural crest cell defects in the etiology of Hirschsprung disease-mental retardation syndrome. Am J Hum Genet. 2003, 72 (2): 465-470. 10.1086/346092.
Article
PubMed Central
CAS
PubMed
Google Scholar
Ahn SM, Cha JY, Kim J, Kim D, Trang HT, Kim YM, Cho YH, Park D, Hong S: Smad3 regulates E-cadherin via miRNA-200 pathway. Oncogene. 2011
Google Scholar
Xiong M, Jiang L, Zhou Y, Qiu W, Fang L, Tan R, Wen P, Yang J: MiR-200 family regulates TGF-{beta}1-induced renal tubular epithelial to mesenchymal transition through Smad pathway by targeting ZEB1 and ZEB2 expression. Am J Physiol Renal Physiol. 2011
Google Scholar
Kong D, Banerjee S, Ahmad A, Li Y, Wang Z, Sethi S, Sarkar FH: Epithelial to mesenchymal transition is mechanistically linked with stem cell signatures in prostate cancer cells. PLoS One. 2010, 5 (8): e12445-10.1371/journal.pone.0012445.
Article
PubMed Central
PubMed
Google Scholar
Liu Y, El-Naggar S, Darling DS, Higashi Y, Dean DC: Zeb1 links epithelial-mesenchymal transition and cellular senescence. Development. 2008, 135 (3): 579-588. 10.1242/dev.007047.
Article
PubMed Central
CAS
PubMed
Google Scholar
Postigo AA, Dean DC: Differential expression and function of members of the zfh-1 family of zinc finger/homeodomain repressors. Proc Natl Acad Sci USA. 2000, 97 (12): 6391-6396. 10.1073/pnas.97.12.6391.
Article
PubMed Central
CAS
PubMed
Google Scholar
Korpal M, Lee ES, Hu G, Kang Y: The miR-200 family inhibits epithelial-mesenchymal transition and cancer cell migration by direct targeting of E-cadherin transcriptional repressors ZEB1 and ZEB2. J Biol Chem. 2008, 283 (22): 14910-14914. 10.1074/jbc.C800074200.
Article
PubMed Central
CAS
PubMed
Google Scholar