Heymann F, Trautwein C, Tacke F: Monocytes and macrophages as cellular targets in liver fibrosis. Inflamm Allergy Drug Targets. 2009, 8: 307-318. 10.2174/187152809789352230.
Article
CAS
PubMed
Google Scholar
Bataller R, Brenner DA: Liver fibrosis. J Clin Invest. 2005, 115: 209-218.
Article
PubMed Central
CAS
PubMed
Google Scholar
Imamura M, Ogawa T, Sasaguri Y, Chayama K, Ueno H: Suppression of macrophage infiltration inhibits activation of hepatic stellate cells and liver fibrogenesis in rats. Gastroenterology. 2005, 128: 138-146. 10.1053/j.gastro.2004.10.005.
Article
CAS
PubMed
Google Scholar
Karlmark KR, Weiskirchen R, Zimmermann HW, Gassler N, Ginhoux F, Weber C, Merad M, Luedde T, Trautwein C, Tacke F: Hepatic recruitment of the inflammatory Gr1+ monocyte subset upon liver injury promotes hepatic fibrosis. Hepatology. 2009, 50: 261-274. 10.1002/hep.22950.
Article
CAS
PubMed
Google Scholar
Mitchell C, Couton D, Couty JP, Anson M, Crain AM, Bizet V, Renia L, Pol S, Mallet V, Gilgenkrantz H: Dual role of CCR2 in the constitution and the resolution of liver fibrosis in mice. Am J Pathol. 2009, 174: 1766-1775. 10.2353/ajpath.2009.080632.
Article
PubMed Central
CAS
PubMed
Google Scholar
Seki E, de Minicis S, Inokuchi S, Taura K, Miyai K, van Rooijen N, Schwabe RF, Brenner DA: CCR2 promotes hepatic fibrosis in mice. Hepatology. 2009, 50: 185-197. 10.1002/hep.22952.
Article
PubMed Central
CAS
PubMed
Google Scholar
Duffield JS, Forbes SJ, Constandinou CM, Clay S, Partolina M, Vuthoori S, Wu S, Lang R, Iredale JP: Selective depletion of macrophages reveals distinct, opposing roles during liver injury and repair. J Clin Invest. 2005, 115: 56-65.
Article
PubMed Central
CAS
PubMed
Google Scholar
Klein I, Cornejo JC, Polakos NK, John B, Wuensch SA, Topham DJ, Pierce RH, Crispe IN: Kupffer cell heterogeneity: functional properties of bone marrow derived and sessile hepatic macrophages. Blood. 2007, 110: 4077-4085. 10.1182/blood-2007-02-073841.
Article
PubMed Central
CAS
PubMed
Google Scholar
Seki E, De Minicis S, Gwak GY, Kluwe J, Inokuchi S, Bursill CA, Llovet JM, Brenner DA, Schwabe RF: CCR1 and CCR5 promote hepatic fibrosis in mice. J Clin Invest. 2009, 119: 1858-1870.
PubMed Central
CAS
PubMed
Google Scholar
Jenkins SJ, Ruckerl D, Cook PC, Jones LH, Finkelman FD, van Rooijen N, MacDonald AS, Allen JE: Local macrophage proliferation, rather than recruitment from the blood, is a signature of TH2 inflammation. Science. 2011, 332: 1284-1288. 10.1126/science.1204351.
Article
PubMed Central
CAS
PubMed
Google Scholar
Tacke F, Kurts C: Infiltrating monocytes versus resident Kupffer cells: do alternatively activated macrophages need to be targeted alternatively?. Hepatology. 2011, 54: 2267-2270.
Article
CAS
PubMed
Google Scholar
Geissmann F, Manz MG, Jung S, Sieweke MH, Merad M, Ley K: Development of monocytes, macrophages, and dendritic cells. Science. 2010, 327: 656-661. 10.1126/science.1178331.
Article
PubMed Central
CAS
PubMed
Google Scholar
Tacke F, Randolph GJ: Migratory fate and differentiation of blood monocyte subsets. Immunobiology. 2006, 211: 609-618. 10.1016/j.imbio.2006.05.025.
Article
CAS
PubMed
Google Scholar
Passlick B, Flieger D, Ziegler-Heitbrock HW: Identification and characterization of a novel monocyte subpopulation in human peripheral blood. Blood. 1989, 74: 2527-2534.
CAS
PubMed
Google Scholar
Seidler S, Zimmermann HW, Bartneck M, Trautwein C, Tacke F: Age-dependent alterations of monocyte subsets and monocyte-related chemokine pathways in healthy adults. BMC Immunol. 2010, 11: 30-10.1186/1471-2172-11-30.
Article
PubMed Central
PubMed
Google Scholar
Ingersoll MA, Spanbroek R, Lottaz C, Gautier EL, Frankenberger M, Hoffmann R, Lang R, Haniffa M, Collin M, Tacke F: Comparison of gene expression profiles between human and mouse monocyte subsets. Blood. 2010, 115: e10-19. 10.1182/blood-2009-07-235028.
Article
PubMed Central
CAS
PubMed
Google Scholar
Geissmann F, Jung S, Littman DR: Blood monocytes consist of two principal subsets with distinct migratory properties. Immunity. 2003, 19: 71-82. 10.1016/S1074-7613(03)00174-2.
Article
CAS
PubMed
Google Scholar
Wong KL, Tai JJ, Wong WC, Han H, Sem X, Yeap WH, Kourilsky P, Wong SC: Gene expression profiling reveals the defining features of the classical, intermediate, and nonclassical human monocyte subsets. Blood. 2011, 118: e16-31. 10.1182/blood-2010-12-326355.
Article
CAS
PubMed
Google Scholar
Cros J, Cagnard N, Woollard K, Patey N, Zhang SY, Senechal B, Puel A, Biswas SK, Moshous D, Picard C: Human CD14dim monocytes patrol and sense nucleic acids and viruses via TLR7 and TLR8 receptors. Immunity. 2010, 33: 375-386. 10.1016/j.immuni.2010.08.012.
Article
PubMed Central
CAS
PubMed
Google Scholar
Tacke F, Alvarez D, Kaplan TJ, Jakubzick C, Spanbroek R, Llodra J, Garin A, Liu J, Mack M, van Rooijen N: Monocyte subsets differentially employ CCR2, CCR5, and CX3CR1 to accumulate within atherosclerotic plaques. J Clin Invest. 2007, 117: 185-194. 10.1172/JCI28549.
Article
PubMed Central
CAS
PubMed
Google Scholar
Le Borgne M, Etchart N, Goubier A, Lira SA, Sirard JC, van Rooijen N, Caux C, Ait-Yahia S, Vicari A, Kaiserlian D, Dubois B: Dendritic cells rapidly recruited into epithelial tissues via CCR6/CCL20 are responsible for CD8+ T cell crosspriming in vivo. Immunity. 2006, 24: 191-201. 10.1016/j.immuni.2006.01.005.
Article
CAS
PubMed
Google Scholar
Tsou CL, Peters W, Si Y, Slaymaker S, Aslanian AM, Weisberg SP, Mack M, Charo IF: Critical roles for CCR2 and MCP-3 in monocyte mobilization from bone marrow and recruitment to inflammatory sites. J Clin Invest. 2007, 117: 902-909. 10.1172/JCI29919.
Article
PubMed Central
CAS
PubMed
Google Scholar
Vanbervliet B, Homey B, Durand I, Massacrier C, Ait-Yahia S, de Bouteiller O, Vicari A, Caux C: Sequential involvement of CCR2 and CCR6 ligands for immature dendritic cell recruitment: possible role at inflamed epithelial surfaces. Eur J Immunol. 2002, 32: 231-242. 10.1002/1521-4141(200201)32:1<231::AID-IMMU231>3.0.CO;2-8.
Article
CAS
PubMed
Google Scholar
Engel DR, Maurer J, Tittel AP, Weisheit C, Cavlar T, Schumak B, Limmer A, van Rooijen N, Trautwein C, Tacke F, Kurts C: CCR2 mediates homeostatic and inflammatory release of Gr1(high) monocytes from the bone marrow, but is dispensable for bladder infiltration in bacterial urinary tract infection. J Immunol. 2008, 181: 5579-5586.
Article
CAS
PubMed
Google Scholar
Serbina NV, Kuziel W, Flavell R, Akira S, Rollins B, Pamer EG: Sequential MyD88-independent and -dependent activation of innate immune responses to intracellular bacterial infection. Immunity. 2003, 19: 891-901. 10.1016/S1074-7613(03)00330-3.
Article
CAS
PubMed
Google Scholar
Serbina NV, Pamer EG: Monocyte emigration from bone marrow during bacterial infection requires signals mediated by chemokine receptor CCR2. Nat Immunol. 2006, 7: 311-317.
Article
CAS
PubMed
Google Scholar
Osterholzer JJ, Ames T, Polak T, Sonstein J, Moore BB, Chensue SW, Toews GB, Curtis JL: CCR2 and CCR6, but not endothelial selectins, mediate the accumulation of immature dendritic cells within the lungs of mice in response to particulate antigen. J Immunol. 2005, 175: 874-883.
Article
PubMed Central
CAS
PubMed
Google Scholar
Robays LJ, Maes T, Lebecque S, Lira SA, Kuziel WA, Brusselle GG, Joos GF, Vermaelen KV: Chemokine receptor CCR2 but not CCR5 or CCR6 mediates the increase in pulmonary dendritic cells during allergic airway inflammation. J Immunol. 2007, 178: 5305-5311.
Article
CAS
PubMed
Google Scholar
Heymann F, Hammerich L, Storch D, Bartneck M, Huss S, Russeler V, Gassler N, Lira SA, Luedde T, Trautwein C, Tacke F: Hepatic macrophage migration and differentiation critical for liver fibrosis is mediated by the chemokine receptor C-C motif chemokine receptor 8 in mice. Hepatology. 2012, 55 (3): 898-909. 10.1002/hep.24764.
Article
PubMed Central
CAS
PubMed
Google Scholar
Auffray C, Sieweke MH, Geissmann F: Blood monocytes: development, heterogeneity, and relationship with dendritic cells. Annu Rev Immunol. 2009, 27: 669-692. 10.1146/annurev.immunol.021908.132557.
Article
CAS
PubMed
Google Scholar
Bosschaerts T, Guilliams M, Stijlemans B, Morias Y, Engel D, Tacke F, Herin M, De Baetselier P, Beschin A: Tip-DC development during parasitic infection is regulated by IL-10 and requires CCL2/CCR2, IFN-gamma and MyD88 signaling. PLoS Pathog. 2010, 6: e1001045-10.1371/journal.ppat.1001045.
Article
PubMed Central
PubMed
Google Scholar
Auffray C, Fogg D, Garfa M, Elain G, Join-Lambert O, Kayal S, Sarnacki S, Cumano A, Lauvau G, Geissmann F: Monitoring of blood vessels and tissues by a population of monocytes with patrolling behavior. Science. 2007, 317: 666-670. 10.1126/science.1142883.
Article
CAS
PubMed
Google Scholar
Nahrendorf M, Swirski FK, Aikawa E, Stangenberg L, Wurdinger T, Figueiredo JL, Libby P, Weissleder R, Pittet MJ: The healing myocardium sequentially mobilizes two monocyte subsets with divergent and complementary functions. J Exp Med. 2007, 204: 3037-3047. 10.1084/jem.20070885.
Article
PubMed Central
CAS
PubMed
Google Scholar
Swirski FK, Nahrendorf M, Etzrodt M, Wildgruber M, Cortez-Retamozo V, Panizzi P, Figueiredo JL, Kohler RH, Chudnovskiy A, Waterman P: Identification of splenic reservoir monocytes and their deployment to inflammatory sites. Science. 2009, 325: 612-616. 10.1126/science.1175202.
Article
PubMed Central
CAS
PubMed
Google Scholar
Tacke F, Ginhoux F, Jakubzick C, van Rooijen N, Merad M, Randolph GJ: Immature monocytes acquire antigens from other cells in the bone marrow and present them to T cells after maturing in the periphery. J Exp Med. 2006, 203: 583-597. 10.1084/jem.20052119.
Article
PubMed Central
CAS
PubMed
Google Scholar
Varol C, Landsman L, Fogg DK, Greenshtein L, Gildor B, Margalit R, Kalchenko V, Geissmann F, Jung S: Monocytes give rise to mucosal, but not splenic, conventional dendritic cells. J Exp Med. 2007, 204: 171-180. 10.1084/jem.20061011.
Article
PubMed Central
CAS
PubMed
Google Scholar
Hanna RN, Carlin LM, Hubbeling HG, Nackiewicz D, Green AM, Punt JA, Geissmann F, Hedrick CC: The transcription factor NR4A1 (Nur77) controls bone marrow differentiation and the survival of Ly6C- monocytes. Nat Immunol. 2011, 12: 778-785. 10.1038/ni.2063.
Article
PubMed Central
CAS
PubMed
Google Scholar
Tacke F, Kurts C: Infiltrating monocytes versus resident Kupffer cells - do alternatively activated macrophages need to be targeted alternatively?. Hepatology. 2011, 54 (6): 2267-2270.
Article
CAS
PubMed
Google Scholar
Seki E, De Minicis S, Osterreicher CH, Kluwe J, Osawa Y, Brenner DA, Schwabe RF: TLR4 enhances TGF-beta signaling and hepatic fibrosis. Nat Med. 2007, 13: 1324-1332. 10.1038/nm1663.
Article
CAS
PubMed
Google Scholar
Tacke F, Weiskirchen R: Update on hepatic stellate cells: pathogenic role in liver fibrosis and novel isolation techniques. Expert Rev Gastroenterol Hepatol. 2012, 6: 67-80. 10.1586/egh.11.92.
Article
CAS
PubMed
Google Scholar
Baeck C, Wehr A, Karlmark KR, Heymann F, Vucur M, Gassler N, Huss S, Klussmann S, Eulberg D, Luedde T: Pharmacological inhibition of the chemokine CCL2 (MCP-1) diminishes liver macrophage infiltration and steatohepatitis in chronic hepatic injury. Gut. 2012, 61: 416-426. 10.1136/gutjnl-2011-300304.
Article
CAS
PubMed
Google Scholar
Efsen E, Grappone C, DeFranco RM, Milani S, Romanelli RG, Bonacchi A, Caligiuri A, Failli P, Annunziato F, Pagliai G: Up-regulated expression of fractalkine and its receptor CX3CR1 during liver injury in humans. J Hepatol. 2002, 37: 39-47. 10.1016/S0168-8278(02)00065-X.
Article
CAS
PubMed
Google Scholar
Isse K, Harada K, Zen Y, Kamihira T, Shimoda S, Harada M, Nakanuma Y: Fractalkine and CX3CR1 are involved in the recruitment of intraepithelial lymphocytes of intrahepatic bile ducts. Hepatology. 2005, 41: 506-516. 10.1002/hep.20582.
Article
CAS
PubMed
Google Scholar
Shimoda S, Harada K, Niiro H, Taketomi A, Maehara Y, Tsuneyama K, Kikuchi K, Nakanuma Y, Mackay IR, Gershwin ME, Akashi K: CX3CL1 (fractalkine): a signpost for biliary inflammation in primary biliary cirrhosis. Hepatology. 2010, 51: 567-575. 10.1002/hep.23318.
Article
PubMed Central
CAS
PubMed
Google Scholar
Wasmuth HE, Zaldivar MM, Berres ML, Werth A, Scholten D, Hillebrandt S, Tacke F, Schmitz P, Dahl E, Wiederholt T: The fractalkine receptor CX3CR1 is involved in liver fibrosis due to chronic hepatitis C infection. J Hepatol. 2008, 48: 208-215. 10.1016/j.jhep.2007.09.008.
Article
CAS
PubMed
Google Scholar
Bourd-Boittin K, Basset L, Bonnier D, L'Helgoualch A, Samson M, Theret N: CX3CL1/fractalkine shedding by human hepatic stellate cells: contribution to chronic inflammation in the liver. J Cell Mol Med. 2009, 13: 1526-1535. 10.1111/j.1582-4934.2009.00787.x.
Article
PubMed Central
CAS
PubMed
Google Scholar
Aspinall AI, Curbishley SM, Lalor PF, Weston CJ, Blahova M, Liaskou E, Adams RM, Holt AP, Adams DH: CX3CR1 and VAP-1 dependent recruitment of CD16+ monocytes across human liver sinusoidal endothelium. Hepatology. 2010, 51: 2030-2039. 10.1002/hep.23591.
Article
PubMed Central
PubMed
Google Scholar
Karlmark KR, Zimmermann HW, Roderburg C, Gassler N, Wasmuth HE, Luedde T, Trautwein C, Tacke F: The fractalkine receptor CX3CR1 protects from liver fibrosis by controlling differentiation and survival of infiltrating hepatic monocytes. Hepatology. 2010, 52 (5): 1769-1782. 10.1002/hep.23894.
Article
CAS
PubMed
Google Scholar
Aoyama T, Inokuchi S, Brenner DA, Seki E: CX3CL1-CX3CR1 interaction prevents carbon tetrachloride-induced liver inflammation and fibrosis in mice. Hepatology. 2010, 52: 1390-1400. 10.1002/hep.23795.
Article
PubMed Central
CAS
PubMed
Google Scholar
Imai T, Hieshima K, Haskell C, Baba M, Nagira M, Nishimura M, Kakizaki M, Takagi S, Nomiyama H, Schall TJ, Yoshie O: Identification and molecular characterization of fractalkine receptor CX3CR1, which mediates both leukocyte migration and adhesion. Cell. 1997, 91: 521-530. 10.1016/S0092-8674(00)80438-9.
Article
CAS
PubMed
Google Scholar
Zimmermann HW, Tacke F: Modification of chemokine pathways and immune cell infiltration as a novel therapeutic approach in liver inflammation and fibrosis. Inflamm Allergy Drug Targets. 2011, 10: 509-536.
Article
CAS
PubMed
Google Scholar
Fallowfield JA, Mizuno M, Kendall TJ, Constandinou CM, Benyon RC, Duffield JS, Iredale JP: Scar-associated macrophages are a major source of hepatic matrix metalloproteinase-13 and facilitate the resolution of murine hepatic fibrosis. J Immunol. 2007, 178: 5288-5295.
Article
CAS
PubMed
Google Scholar
Pellicoro A, Aucott RL, Ramachandran P, Robson AJ, Fallowfield JA, Snowdon VK, Hartland SN, Vernon M, Duffield JS, Benyon RC: Elastin accumulation is regulated at the level of degradation by macrophage metalloelastase (MMP-12) during experimental liver fibrosis. Hepatology. 2011.
Google Scholar
Thomas JA, Pope C, Wojtacha D, Robson AJ, Gordon-Walker TT, Hartland S, Ramachandran P, Van Deemter M, Hume DA, Iredale JP, Forbes SJ: Macrophage therapy for murine liver fibrosis recruits host effector cells improving fibrosis, regeneration, and function. Hepatology. 2011, 53: 2003-2015. 10.1002/hep.24315.
Article
CAS
PubMed
Google Scholar
Jiao J, Sastre D, Fiel MI, Lee UE, Ghiassi-Nejad Z, Ginhoux F, Vivier E, Friedman SL, Merad M, Aloman C: Dendritic cell regulation of carbon tetrachloride-induced murine liver fibrosis regression. Hepatology. 2012, 55: 244-255. 10.1002/hep.24621.
Article
PubMed Central
PubMed
Google Scholar
Marra F, DeFranco R, Grappone C, Milani S, Pastacaldi S, Pinzani M, Romanelli RG, Laffi G, Gentilini P: Increased expression of monocyte chemotactic protein-1 during active hepatic fibrogenesis: correlation with monocyte infiltration. Am J Pathol. 1998, 152: 423-430.
PubMed Central
CAS
PubMed
Google Scholar
Zimmermann HW, Seidler S, Nattermann J, Gassler N, Hellerbrand C, Zernecke A, Tischendorf JJ, Luedde T, Weiskirchen R, Trautwein C, Tacke F: Functional contribution of elevated circulating and hepatic non-classical CD14CD16 monocytes to inflammation and human liver fibrosis. PLoS One. 2010, 5: e11049-10.1371/journal.pone.0011049.
Article
PubMed Central
PubMed
Google Scholar
Zimmermann HW, Seidler S, Gassler N, Nattermann J, Luedde T, Trautwein C, Tacke F: Interleukin-8 is activated in patients with chronic liver diseases and associated with hepatic macrophage accumulation in human liver fibrosis. PLoS One. 2011, 6: e21381-10.1371/journal.pone.0021381.
Article
PubMed Central
CAS
PubMed
Google Scholar