Friedman SL: Liver fibrosis -- from bench to bedside. J Hepatol. 2003, 38 (Suppl 1): S38-53.
Article
PubMed
Google Scholar
Tsukada S, Parsons CJ, Rippe RA: Mechanisms of liver fibrosis. Clin Chim Acta. 2006, 364: 33-60. 10.1016/j.cca.2005.06.014.
Article
CAS
PubMed
Google Scholar
Atzori L, Poli G, Perra A: Hepatic stellate cell: a star cell in the liver. Int J Biochem Cell Biol. 2009, 41: 1639-1642. 10.1016/j.biocel.2009.03.001.
Article
CAS
PubMed
Google Scholar
Ratziu V, Lalazar A, Wong L, Dang Q, Collins C, Shaulian E, Jensen S, Friedman SL: Zf9, a Kruppel-like transcription factor up-regulated in vivo during early hepatic fibrosis. Proc Natl Acad Sci USA. 1998, 95: 9500-9505. 10.1073/pnas.95.16.9500.
Article
PubMed Central
CAS
PubMed
Google Scholar
Buck M, Kim DJ, Houglum K, Hassanein T, Chojkier M: c-Myb modulates transcription of the alpha-smooth muscle actin gene in activated hepatic stellate cells. Am J Physiol Gastrointest Liver Physiol. 2000, 278: G321-328.
CAS
PubMed
Google Scholar
Schnabl B, Kweon YO, Frederick JP, Wang XF, Rippe RA, Brenner DA: The role of Smad3 in mediating mouse hepatic stellate cell activation. Hepatology. 2001, 34: 89-100.
Article
CAS
PubMed
Google Scholar
Wang X, Tang X, Gong X, Albanis E, Friedman SL, Mao Z: Regulation of hepatic stellate cell activation and growth by transcription factor myocyte enhancer factor 2. Gastroenterology. 2004, 127: 1174-1188. 10.1053/j.gastro.2004.07.007.
Article
CAS
PubMed
Google Scholar
Adachi M, Osawa Y, Uchinami H, Kitamura T, Accili D, Brenner DA: The forkhead transcription factor FoxO1 regulates proliferation and transdifferentiation of hepatic stellate cells. Gastroenterology. 2007, 132: 1434-1446. 10.1053/j.gastro.2007.01.033.
Article
CAS
PubMed
Google Scholar
Zhu NL, Wang J, Tsukamoto H: The Necdin-Wnt pathway causes epigenetic peroxisome proliferator-activated receptor gamma repression in hepatic stellate cells. J Biol Chem. 2010, 285: 30463-30471. 10.1074/jbc.M110.156703.
Article
PubMed Central
CAS
PubMed
Google Scholar
Liu XJ, Yang L, Luo FM, Wu HB, Qiang Q: Association of differentially expressed genes with activation of mouse hepatic stellate cells by high-density cDNA microarray. World J Gastroenterol. 2004, 10: 1600-1607.
Article
PubMed Central
CAS
PubMed
Google Scholar
Jiang F, Parsons CJ, Stefanovic B: Gene expression profile of quiescent and activated rat hepatic stellate cells implicates Wnt signaling pathway in activation. J Hepatol. 2006, 45: 401-409. 10.1016/j.jhep.2006.03.016.
Article
CAS
PubMed
Google Scholar
Boers W, Aarrass S, Linthorst C, Pinzani M, Elferink RO, Bosma P: Transcriptional profiling reveals novel markers of liver fibrogenesis: gremlin and insulin-like growth factor-binding proteins. J Biol Chem. 2006, 281: 16289-16295. 10.1074/jbc.M600711200.
Article
CAS
PubMed
Google Scholar
Woo SW, Hwang KI, Chung MW, Jin SK, Bang S, Lee SH, Chung HJ, Sohn DH: Gene expression profiles during the activation of rat hepatic stellate cells evaluated by cDNA microarray. Arch Pharm Res. 2007, 30: 1410-1418. 10.1007/BF02977365.
Article
CAS
PubMed
Google Scholar
De Minicis S, Seki E, Uchinami H, Kluwe J, Zhang Y, Brenner DA, Schwabe RF: Gene expression profiles during hepatic stellate cell activation in culture and in vivo. Gastroenterology. 2007, 132: 1937-1946. 10.1053/j.gastro.2007.02.033.
Article
CAS
PubMed
Google Scholar
Xia Y, Chen R, Song Z, Ye S, Sun R, Xue Q, Zhang Z: Gene expression profiles during activation of cultured rat hepatic stellate cells by tumoral hepatocytes and fetal bovine serum. J Cancer Res Clin Oncol. 2010, 136: 309-321. 10.1007/s00432-009-0666-5.
Article
CAS
PubMed
Google Scholar
Friedman SL, Roll FJ, Boyles J, Arenson DM, Bissell DM: Maintenance of differentiated phenotype of cultured rat hepatic lipocytes by basement membrane matrix. J Biol Chem. 1989, 264: 10756-10762.
CAS
PubMed
Google Scholar
Sohara N, Znoyko I, Levy MT, Trojanowska M, Reuben A: Reversal of activation of human myofibroblast-like cells by culture on a basement membrane-like substrate. J Hepatol. 2002, 37: 214-221. 10.1016/S0168-8278(02)00103-4.
Article
CAS
PubMed
Google Scholar
Gaca MD, Zhou X, Issa R, Kiriella K, Iredale JP, Benyon RC: Basement membrane-like matrix inhibits proliferation and collagen synthesis by activated rat hepatic stellate cells: evidence for matrix-dependent deactivation of stellate cells. Matrix Biol. 2003, 22: 229-239. 10.1016/S0945-053X(03)00017-9.
Article
CAS
PubMed
Google Scholar
Shimada H, Ochi T, Imasato A, Morizane Y, Hori M, Ozaki H, Shinjo K: Gene expression profiling and functional assays of activated hepatic stellate cells suggest that myocardin has a role in activation. Liver Int. 2010, 30: 42-54. 10.1111/j.1478-3231.2009.02120.x.
Article
CAS
PubMed
Google Scholar
Wang D, Chang PS, Wang Z, Sutherland L, Richardson JA, Small E, Krieg PA, Olson EN: Activation of cardiac gene expression by myocardin, a transcriptional cofactor for serum response factor. Cell. 2001, 105: 851-862. 10.1016/S0092-8674(01)00404-4.
Article
CAS
PubMed
Google Scholar
Chen J, Kitchen CM, Streb JW, Miano JM: Myocardin: a component of a molecular switch for smooth muscle differentiation. J Mol Cell Cardiol. 2002, 34: 1345-1356. 10.1006/jmcc.2002.2086.
Article
CAS
PubMed
Google Scholar
Du KL, Ip HS, Li J, Chen M, Dandre F, Yu W, Lu MM, Owens GK, Parmacek MS: Myocardin is a critical serum response factor cofactor in the transcriptional program regulating smooth muscle cell differentiation. Mol Cell Biol. 2003, 23: 2425-2437. 10.1128/MCB.23.7.2425-2437.2003.
Article
PubMed Central
CAS
PubMed
Google Scholar
Wang Z, Wang DZ, Pipes GC, Olson EN: Myocardin is a master regulator of smooth muscle gene expression. Proc Natl Acad Sci USA. 2003, 100: 7129-7134. 10.1073/pnas.1232341100.
Article
PubMed Central
CAS
PubMed
Google Scholar
Yin F, Hoggatt AM, Zhou J, Herring BP: 130-kDa smooth muscle myosin light chain kinase is transcribed from a CArG-dependent, internal promoter within the mouse mylk gene. Am J Physiol Cell Physiol. 2006, 290: C1599-1609. 10.1152/ajpcell.00289.2005.
Article
CAS
PubMed
Google Scholar
Qiu P, Ritchie RP, Fu Z, Cao D, Cumming J, Miano JM, Wang DZ, Li HJ, Li L: Myocardin enhances Smad3-mediated transforming growth factor-beta1 signaling in a CArG box-independent manner: Smad-binding element is an important cis element for SM22alpha transcription in vivo. Circ Res. 2005, 97: 983-991. 10.1161/01.RES.0000190604.90049.71.
Article
CAS
PubMed
Google Scholar
Qiu P, Ritchie RP, Gong XQ, Hamamori Y, Li L: Dynamic changes in chromatin acetylation and the expression of histone acetyltransferases and histone deacetylases regulate the SM22alpha transcription in response to Smad3-mediated TGFbeta1 signaling. Biochem Biophys Res Commun. 2006, 348: 351-358. 10.1016/j.bbrc.2006.07.009.
Article
CAS
PubMed
Google Scholar
Herrmann J, Haas U, Gressner AM, Weiskirchen R: TGF-beta up-regulates serum response factor in activated hepatic stellate cells. Biochim Biophys Acta. 2007, 1772: 1250-1257. 10.1016/j.bbadis.2007.10.006.
Article
CAS
PubMed
Google Scholar
Milyavsky M, Shats I, Cholostoy A, Brosh R, Buganim Y, Weisz L, Kogan I, Cohen M, Shatz M, Madar S: Inactivation of myocardin and p16 during malignant transformation contributes to a differentiation defect. Cancer Cell. 2007, 11: 133-146. 10.1016/j.ccr.2006.11.022.
Article
CAS
PubMed
Google Scholar
Guyot C, Lepreux S, Combe C, Doudnikoff E, Bioulac-Sage P, Balabaud C, Desmouliere A: Hepatic fibrosis and cirrhosis: the (myo)fibroblastic cell subpopulations involved. Int J Biochem Cell Biol. 2006, 38: 135-151.
CAS
PubMed
Google Scholar
Wamhoff BR, Bowles DK, McDonald OG, Sinha S, Somlyo AP, Somlyo AV, Owens GK: L-type voltage-gated Ca2+ channels modulate expression of smooth muscle differentiation marker genes via a rho kinase/myocardin/SRF-dependent mechanism. Circ Res. 2004, 95: 406-414. 10.1161/01.RES.0000138582.36921.9e.
Article
CAS
PubMed
Google Scholar
Sato Y, Murase K, Kato J, Kobune M, Sato T, Kawano Y, Takimoto R, Takada K, Miyanishi K, Matsunaga T: Resolution of liver cirrhosis using vitamin A-coupled liposomes to deliver siRNA against a collagen-specific chaperone. Nat Biotechnol. 2008, 26: 431-442. 10.1038/nbt1396.
Article
CAS
PubMed
Google Scholar