Ciulla M, Paliotti R, Hess DB, Tjahja E, Campbell SE, Magrini F, Weber KT: Echocardiographic patterns of myocardial fibrosis in hypertensive patients: endomyocardial biopsy versus ultrasonic tissue characterization. J Am Soc Echocardiogr. 1997, 10: 657-664. 10.1016/S0894-7317(97)70028-2.
Article
CAS
PubMed
Google Scholar
Rossi MA: Pathologic fibrosis and connective tissue matrix in left ventricular hypertrophy due to chronic arterial hypertension in humans. J Hypertens. 1998, 16: 1031-1041. 10.1097/00004872-199816070-00018.
Article
CAS
PubMed
Google Scholar
Querejeta R, Varo N, Lopez B, Larman M, Artinano E, Etayo JC, Martinez Ubago JL, Gutierrez-Stampa M, Emparanza JI, Gil MJ, Monreal I, Mindan JP, Diez J: Serum carboxy-terminal propeptide of procollagen type I is a marker of myocardial fibrosis in hypertensive heart disease. Circulation. 2000, 101: 1729-1735. 10.1161/01.CIR.101.14.1729.
Article
CAS
PubMed
Google Scholar
Diez J, Querejeta R, Lopez B, Gonzalez A, Larman M, Martinez Ubago JL: Losartan-dependent regression of myocardial fibrosis is associated with reduction of left ventricular chamber stiffness in hypertensive patients. Circulation. 2002, 105: 2512-2517. 10.1161/01.CIR.0000017264.66561.3D.
Article
CAS
PubMed
Google Scholar
Brilla CG, Funck RC, Rupp H: Lisinopril-mediated regression of myocardial fibrosis in patients with hypertensive heart disease. Circulation. 2000, 102: 1388-1393. 10.1161/01.CIR.102.12.1388.
Article
CAS
PubMed
Google Scholar
Weber KT, Brilla CG, Janicki JS: Myocardial fibrosis: functional significance and regulatory factors. Cardiovasc Res. 1993, 27: 341-348. 10.1093/cvr/27.3.341.
Article
CAS
PubMed
Google Scholar
Ciulla MM, Paliotti R, Esposito A, Diez J, Lopez B, Dahlof B, Nicholls MG, Smith RD, Gilles L, Magrini F, Zanchetti A: Different effects of antihypertensive therapies based on losartan or atenolol on ultrasound and biochemical markers of myocardial fibrosis: results of a randomized trial. Circulation. 2004, 110: 552-557. 10.1161/01.CIR.0000137118.47943.5C.
Article
CAS
PubMed
Google Scholar
Brilla CG, Rupp H, Maisch B: Effects of ACE inhibition versus non-ACE inhibitor antihypertensive treatment on myocardial fibrosis in patients with arterial hypertension. Retrospective analysis of 120 patients with left ventricular endomyocardial biopsies. Herz. 2003, 28: 744-753. 10.1007/s00059-003-2524-6.
Article
PubMed
Google Scholar
van den Borne SW, Diez J, Blankesteijn WM, Verjans J, Hofstra L, Narula J: Myocardial remodeling after infarction: the role of myofibroblasts. Nat Rev Cardiol. 2010, 7: 30-37. 10.1038/nrcardio.2009.199.
Article
PubMed
Google Scholar
Nishikimi T, Maeda N, Matsuoka H: The role of natriuretic peptides in cardioprotection. Cardiovasc Res. 2006, 69: 318-328. 10.1016/j.cardiores.2005.10.001.
Article
CAS
PubMed
Google Scholar
Blaauw E, van Nieuwenhoven FA, Willemsen P, Delhaas T, Prinzen FW, Snoeckx LH, van Bilsen M, van der Vusse GJ: Stretch-induced hypertrophy of isolated adult rabbit cardiomyocytes. Am J Physiol Heart Circ Physiol. 2010, 299: H780-H787. 10.1152/ajpheart.00822.2009.
Article
CAS
PubMed
Google Scholar
Christoffersen TE, Aplin M, Strom CC, Sheikh SP, Skott O, Busk PK, Haunso S, Nielsen LB: Increased natriuretic peptide receptor A and C gene expression in rats with pressure-overload cardiac hypertrophy. Am J Physiol Heart Circ Physiol. 2006, 290: H1635-H1641.
Article
CAS
PubMed
Google Scholar
Kapoun AM, Liang F, O’Young G, Damm DL, Quon D, White RT, Munson K, Lam A, Schreiner GF, Protter AA: B-type natriuretic peptide exerts broad functional opposition to transforming growth factor-beta in primary human cardiac fibroblasts: fibrosis, myofibroblast conversion, proliferation, and inflammation. Circ Res. 2004, 94: 453-461. 10.1161/01.RES.0000117070.86556.9F.
Article
CAS
PubMed
Google Scholar
Nishikimi T, Inaba-Iemura C, Ishimura K, Tadokoro K, Koshikawa S, Ishikawa K, Akimoto K, Hattori Y, Kasai K, Minamino N, Maeda N, Matsuoka H: Natriuretic peptide/natriuretic peptide receptor-A (NPR-A) system has inhibitory effects in renal fibrosis in mice. Regul Pept. 2009, 154: 44-53. 10.1016/j.regpep.2009.02.006.
Article
CAS
PubMed
Google Scholar
Lijnen P, Petrov V: Transforming growth factor-beta 1-induced collagen production in cultures of cardiac fibroblasts is the result of the appearance of myofibroblasts. Methods Find Exp Clin Pharmacol. 2002, 24: 333-344. 10.1358/mf.2002.24.6.693065.
Article
CAS
PubMed
Google Scholar
Lijnen PJ, Petrov VV, Fagard RH: Induction of cardiac fibrosis by transforming growth factor-beta(1). Mol Genet Metab. 2000, 71: 418-435. 10.1006/mgme.2000.3032.
Article
CAS
PubMed
Google Scholar
Bujak M, Frangogiannis NG: The role of TGF-beta signaling in myocardial infarction and cardiac remodeling. Cardiovasc Res. 2007, 74: 184-195. 10.1016/j.cardiores.2006.10.002.
Article
PubMed Central
CAS
PubMed
Google Scholar
Vaughan MB, Howard EW, Tomasek JJ: Transforming growth factor-beta1 promotes the morphological and functional differentiation of the myofibroblast. Exp Cell Res. 2000, 257: 180-189. 10.1006/excr.2000.4869.
Article
CAS
PubMed
Google Scholar
Merryman WD, Lukoff HD, Long RA, Engelmayr GC, Hopkins RA, Sacks MS: Synergistic effects of cyclic tension and transforming growth factor-beta1 on the aortic valve myofibroblast. Cardiovasc Pathol. 2007, 16: 268-276. 10.1016/j.carpath.2007.03.006.
Article
PubMed Central
CAS
PubMed
Google Scholar
Sadoshima J, Jahn L, Takahashi T, Kulik TJ, Izumo S: Molecular characterization of the stretch-induced adaptation of cultured cardiac cells. An in vitro model of load-induced cardiac hypertrophy. J Biol Chem. 1992, 267: 10551-10560.
CAS
PubMed
Google Scholar
Tomasek JJ, Gabbiani G, Hinz B, Chaponnier C, Brown RA: Myofibroblasts and mechano-regulation of connective tissue remodelling. Nat Rev Mol Cell Biol. 2002, 3: 349-363. 10.1038/nrm809.
Article
CAS
PubMed
Google Scholar
Blaauboer ME, Smit TH, Hanemaaijer R, Stoop R, Everts V: Cyclic mechanical stretch reduces myofibroblast differentiation of primary lung fibroblasts. BiochemBiophys Res Commun. 2011, 404: 23-27. 10.1016/j.bbrc.2010.11.033.
Article
CAS
Google Scholar
Westermann D, Lindner D, Kasner M, Zietsch C, Savvatis K, Escher F, von Schlippenbach J, Skurk C, Steendijk P, Riad A, Poller W, Schultheiss HP, Tschope C: Cardiac inflammation contributes to changes in the extracellular matrix in patients with heart failure and normal ejection fraction. Circ Heart Fail. 2011, 4: 44-52. 10.1161/CIRCHEARTFAILURE.109.931451.
Article
PubMed
Google Scholar
Kuwahara F, Kai H, Tokuda K, Takeya M, Takeshita A, Egashira K, Imaizumi T: Hypertensive myocardial fibrosis and diastolic dysfunction: another model of inflammation?. Hypertension. 2004, 43: 739-745. 10.1161/01.HYP.0000118584.33350.7d.
Article
CAS
PubMed
Google Scholar
Takahashi N, Calderone A, Izzo NJ, Maki TM, Marsh JD, Colucci WS: Hypertrophic stimuli induce transforming growth factor-beta 1 expression in rat ventricular myocytes. J Clin Invest. 1994, 94: 1470-1476. 10.1172/JCI117485.
Article
PubMed Central
CAS
PubMed
Google Scholar
Shiota N, Rysa J, Kovanen PT, Ruskoaho H, Kokkonen JO, Lindstedt KA: A role for cardiac mast cells in the pathogenesis of hypertensive heart disease. J Hypertens. 2003, 21: 1935-1944. 10.1097/00004872-200310000-00022.
Article
CAS
PubMed
Google Scholar
Syedain ZH, Tranquillo RT: TGF-beta1 diminishes collagen production during long-term cyclic stretching of engineered connective tissue: implication of decreased ERK signaling. J Biomech. 2011, 44: 848-855. 10.1016/j.jbiomech.2010.12.007.
Article
PubMed Central
PubMed
Google Scholar
Tsuruda T, Boerrigter G, Huntley BK, Noser JA, Cataliotti A, Costello-Boerrigter LC, Chen HH, Burnett JC: Brain natriuretic Peptide is produced in cardiac fibroblasts and induces matrix metalloproteinases. Circ Res. 2002, 91: 1127-1134. 10.1161/01.RES.0000046234.73401.70.
Article
CAS
PubMed
Google Scholar
Huntley BK, Sandberg SM, Noser JA, Cataliotti A, Redfield MM, Matsuda Y, Burnett JC: BNP-induced activation of cGMP in human cardiac fibroblasts: interactions with fibronectin and natriuretic peptide receptors. J Cell Physiol. 2006, 209: 943-949. 10.1002/jcp.20793.
Article
CAS
PubMed
Google Scholar
Jarvis MD, Rademaker MT, Ellmers LJ, Currie MJ, McKenzie JL, Palmer BR, Frampton CM, Richards AM, Cameron VA: Comparison of infarct-derived and control ovine cardiac myofibroblasts in culture: response to cytokines and natriuretic peptide receptor expression profiles. Am J Physiol Heart Circ Physiol. 2006, 291: H1952-H1958. 10.1152/ajpheart.00764.2005.
Article
CAS
PubMed
Google Scholar
Koivisto E, Karkkola L, Majalahti T, Aro J, Tokola H, Kerkela R, Ruskoaho H: M-CAT element mediates mechanical stretch-activated transcription of B-type natriuretic peptide via ERK activation. Can J Physiol Pharmacol. 2011, 89: 539-550. 10.1139/y11-049.
Article
CAS
PubMed
Google Scholar
Gan Q, Yoshida T, Li J, Owens GK: Smooth muscle cells and myofibroblasts use distinct transcriptional mechanisms for smooth muscle alpha-actin expression. Circ Res. 2007, 101: 883-892. 10.1161/CIRCRESAHA.107.154831.
Article
CAS
PubMed
Google Scholar
Gabbiani G: The myofibroblast in wound healing and fibrocontractive diseases. J Pathol. 2003, 200: 500-503. 10.1002/path.1427.
Article
CAS
PubMed
Google Scholar
Dalla Costa AP, Clemente CF, Carvalho HF, Carvalheira JB, Nadruz W, Franchini KG: FAK mediates the activation of cardiac fibroblasts induced by mechanical stress through regulation of the mTOR complex. Cardiovasc Res. 2010, 86: 421-431. 10.1093/cvr/cvp416.
Article
CAS
PubMed
Google Scholar
Atance J, Yost MJ, Carver W: Influence of the extracellular matrix on the regulation of cardiac fibroblast behavior by mechanical stretch. J Cell Physiol. 2004, 200: 377-386. 10.1002/jcp.20034.
Article
CAS
PubMed
Google Scholar
Huntley BK, Ichiki T, Sangaralingham SJ, Chen HH, Burnett JC: B-type natriuretic peptide and extracellular matrix protein interactions in human cardiac fibroblasts. J Cell Physiol. 2010, 225: 251-255. 10.1002/jcp.22253.
Article
CAS
PubMed
Google Scholar