Espira L, Czubryt MP: Emerging concepts in cardiac matrix biology. Can J Physiol Pharmacol. 2009, 87: 996-1008. 10.1139/Y09-105.
Article
CAS
PubMed
Google Scholar
Weber KT, Sun Y, Katwa LC: Wound healing following myocardial infarction. Clin Cardiol. 1996, 19: 447-455. 10.1002/clc.4960190602.
Article
CAS
PubMed
Google Scholar
Enoch S, Leaper DJ: Basic science of wound healing. Surgery. 2005, 23: 37-42. 10.1383/surg.23.2.37.60352.
Google Scholar
Undas A, Ariens RA: Fibrin clot structure and function: a role in the pathophysiology of arterial and venous thromboembolic diseases. Arterioscler Thromb Vasc Biol. 2011, 31: e88-e99. 10.1161/ATVBAHA.111.230631.
Article
CAS
PubMed
Google Scholar
Brass LF, Wannemacher KM, Ma P, Stalker TJ: Regulating thrombus growth and stability to achieve an optimal response to injury. J Thromb Haemost. 2011, 9 (Suppl 1): 66-75.
Article
PubMed Central
CAS
PubMed
Google Scholar
Crawford JR, Haudek SB, Cieslik KA, Trial J, Entman ML: Origin of developmental precursors dictates the pathophysiologic role of cardiac fibroblasts. J Cardiovasc Transl Res. 2012, 10.1007/s12265-012-9402-7.
Google Scholar
Ehrlich HP, Rajaratnam JB: Cell locomotion forces versus cell contraction forces for collagen lattice contraction: an in vitro model of wound contraction. Tissue Cell. 1990, 22: 407-417. 10.1016/0040-8166(90)90070-P.
Article
CAS
PubMed
Google Scholar
Harris AK, Stopak D, Wild P: Fibroblast traction as a mechanism for collagen morphogenesis. Nature. 1981, 290: 249-251. 10.1038/290249a0.
Article
CAS
PubMed
Google Scholar
Gabbiani G, Ryan GB, Majne G: Presence of modified fibroblasts in granulation tissue and their possible role in wound contraction. Experientia. 1971, 27: 549-550. 10.1007/BF02147594.
Article
CAS
PubMed
Google Scholar
Porter S: The role of the fibroblast in wound contraction and healing. Wounds UK. 2007, 3: 33-40.
Google Scholar
Desmouliere A, Redard M, Darby I, Gabbiani G: Apoptosis mediates the decrease in cellularity during the transition between granulation tissue and scar. Am J Pathol. 1995, 146: 56-66.
PubMed Central
CAS
PubMed
Google Scholar
Bakker K, Schaper NC: The development of global consensus guidelines on the management and prevention of the diabetic foot 2011. Diabetes Metab Res Rev. 2012, 28 (Suppl 1): 116-118.
Article
PubMed
Google Scholar
Wall IB, Moseley R, Baird DM, Kipling D, Giles P, Laffafian I, Price PE, Thomas DW, Stephens P: Fibroblast dysfunction is a key factor in the non-healing of chronic venous leg ulcers. J Invest Dermatol. 2008, 128: 2526-2540. 10.1038/jid.2008.114.
Article
CAS
PubMed
Google Scholar
Ramelet AA, Hirt-Burri N, Raffoul W, Scaletta C, Pioletti DP, Offord E, Mansourian R, Applegate LA: Chronic wound healing by fetal cell therapy may be explained by differential gene profiling observed in fetal versus old skin cells. Exp Gerontol. 2009, 44: 208-218. 10.1016/j.exger.2008.11.004.
Article
CAS
PubMed
Google Scholar
Jun JI, Lau LF: The matricellular protein CCN1 induces fibroblast senescence and restricts fibrosis in cutaneous wound healing. Nat Cell Biol. 2010, 12: 676-685. 10.1038/ncb2070.
Article
PubMed Central
CAS
PubMed
Google Scholar
Berman B, Bieley HC: Adjunct therapies to surgical management of keloids. Dermatol Surg. 1996, 22: 126-130.
CAS
PubMed
Google Scholar
Shockman S, Paghdal KV, Cohen G: Medical and surgical management of keloids: a review. J Drugs Dermatol. 2010, 9: 1249-1257.
PubMed
Google Scholar
Parsonage G, Filer AD, Haworth O, Nash GB, Rainger GE, Salmon M, Buckley CD: A stromal address code defined by fibroblasts. Trends Immunol. 2005, 26: 150-156. 10.1016/j.it.2004.11.014.
Article
PubMed Central
CAS
PubMed
Google Scholar
Flavell SJ, Hou TZ, Lax S, Filer AD, Salmon M, Buckley CD: Fibroblasts as novel therapeutic targets in chronic inflammation. Br J Pharmacol. 2008, 153 (Suppl 1): S241-S246.
PubMed Central
CAS
PubMed
Google Scholar
Murphy KE, McCue SW, McElwain DL: Clinical strategies for the alleviation of contractures from a predictive mathematical model of dermal repair. Wound Repair Regen. 2012, 20: 194-202. 10.1111/j.1524-475X.2012.00775.x.
Article
PubMed
Google Scholar
Santiago JJ, Dangerfield AL, Rattan SG, Bathe KL, Cunnington RH, Raizman JE, Bedosky KM, Freed DH, Kardami E, Dixon IM: Cardiac fibroblast to myofibroblast differentiation in vivo and in vitro: expression of focal adhesion components in neonatal and adult rat ventricular myofibroblasts. Dev Dyn. 2010, 239: 1573-1584. 10.1002/dvdy.22280.
Article
CAS
PubMed
Google Scholar
Carlson S, Trial J, Soeller C, Entman ML: Cardiac mesenchymal stem cells contribute to scar formation after myocardial infarction. Cardiovasc Res. 2011, 91: 99-107. 10.1093/cvr/cvr061.
Article
PubMed Central
CAS
PubMed
Google Scholar
Zhou B, Pu WT: Epicardial epithelial-to-mesenchymal transition in injured heart. J Cell Mol Med. 2011, 15: 2781-2783. 10.1111/j.1582-4934.2011.01450.x.
Article
PubMed Central
CAS
PubMed
Google Scholar
Willems IE, Havenith MG, De Mey JG, Daemen MJ: The alpha-smooth muscle actin-positive cells in healing human myocardial scars. Am J Pathol. 1994, 145: 868-875.
PubMed Central
CAS
PubMed
Google Scholar
Miragoli M, Salvarani N, Rohr S: Myofibroblasts induce ectopic activity in cardiac tissue. Circ Res. 2007, 101: 755-758.
CAS
PubMed
Google Scholar
Vasquez C, Benamer N, Morley GE: The cardiac fibroblast: functional and electrophysiological considerations in healthy and diseased hearts. J Cardiovasc Pharmacol. 2011, 57: 380-388. 10.1097/FJC.0b013e31820cda19.
Article
PubMed Central
CAS
PubMed
Google Scholar
Creemers EE, Pinto YM: Molecular mechanisms that control interstitial fibrosis in the pressure-overloaded heart. Cardiovasc Res. 2011, 89: 265-272. 10.1093/cvr/cvq308.
Article
CAS
PubMed
Google Scholar
Katwa LC, Shashikant CS: Cardiac remodeling and fibrosis: Role of myofibroblasts. The Cardiac Fibroblast. Edited by: Turner NA. 2011, Research Signpost, Trivandrum, 29-52.
Google Scholar
Gramley F, Lorenzen J, Pezzella F, Kettering K, Himmrich E, Plumhans C, Koellensperger E, Munzel T: Hypoxia and myocardial remodeling in human cardiac allografts: a time-course study. J Heart Lung Transplant. 2009, 28: 1119-1126. 10.1016/j.healun.2009.05.038.
Article
PubMed
Google Scholar
Lokmic Z, Musyoka J, Hewitson TD, Darby IA: Hypoxia and hypoxia signaling in tissue repair and fibrosis. Int Rev Cell Mol Biol. 2012, 296: 139-185.
Article
CAS
PubMed
Google Scholar
Deschene K, Celeste C, Boerboom D, Theoret CL: Hypoxia regulates the expression of extracellular matrix associated proteins in equine dermal fibroblasts via HIF1. J Dermatol Sci. 2012, 65: 12-18. 10.1016/j.jdermsci.2011.09.006.
Article
CAS
PubMed
Google Scholar
Ohtani K, Yutani C, Nagata S, Koretsune Y, Hori M, Kamada T: High prevalence of atrial fibrosis in patients with dilated cardiomyopathy. J Am Coll Cardiol. 1995, 25: 1162-1169. 10.1016/0735-1097(94)00529-Y.
Article
CAS
PubMed
Google Scholar
Cieslik KA, Taffet GE, Carlson S, Hermosillo J, Trial J, Entman ML: Immune-inflammatory dysregulation modulates the incidence of progressive fibrosis and diastolic stiffness in the aging heart. J Mol Cell Cardiol. 2011, 50: 248-256. 10.1016/j.yjmcc.2010.10.019.
Article
PubMed Central
CAS
PubMed
Google Scholar
Ramirez F, Tanaka S, Bou-Gharios G: Transcriptional regulation of the human alpha2(I) collagen gene (COL1A2), an informative model system to study fibrotic diseases. Matrix Biol. 2006, 25: 365-372. 10.1016/j.matbio.2006.05.002.
Article
CAS
PubMed
Google Scholar
Chen SJ, Yuan W, Lo S, Trojanowska M, Varga J: Interaction of smad3 with a proximal smad-binding element of the human alpha2(I) procollagen gene promoter required for transcriptional activation by TGF-beta. J Cell Physiol. 2000, 183: 381-392. 10.1002/(SICI)1097-4652(200006)183:3<381::AID-JCP11>3.0.CO;2-O.
Article
CAS
PubMed
Google Scholar
Dobaczewski M, Bujak M, Li N, Gonzalez-Quesada C, Mendoza LH, Wang XF, Frangogiannis NG: Smad3 signaling critically regulates fibroblast phenotype and function in healing myocardial infarction. Circ Res. 2010, 107: 418-428. 10.1161/CIRCRESAHA.109.216101.
Article
PubMed Central
CAS
PubMed
Google Scholar
Kenyon NJ, Ward RW, McGrew G, Last JA: TGF-beta1 causes airway fibrosis and increased collagen I and III mRNA in mice. Thorax. 2003, 58: 772-777. 10.1136/thorax.58.9.772.
Article
PubMed Central
CAS
PubMed
Google Scholar
Gressner AM, Weiskirchen R: Modern pathogenetic concepts of liver fibrosis suggest stellate cells and TGF-beta as major players and therapeutic targets. J Cell Mol Med. 2006, 10: 76-99. 10.1111/j.1582-4934.2006.tb00292.x.
Article
PubMed Central
CAS
PubMed
Google Scholar
Wang B, Komers R, Carew R, Winbanks CE, Xu B, Herman-Edelstein M, Koh P, Thomas M, Jandeleit-Dahm K, Gregorevic P: Suppression of microRNA-29 expression by TGF-beta1 promotes collagen expression and renal fibrosis. J Am Soc Nephrol. 2012, 23: 252-265. 10.1681/ASN.2011010055.
Article
PubMed Central
CAS
PubMed
Google Scholar
Massague J: TGFbeta in cancer. Cell. 2008, 134: 215-230. 10.1016/j.cell.2008.07.001.
Article
PubMed Central
CAS
PubMed
Google Scholar
Ashcroft GS, Yang X, Glick AB, Weinstein M, Letterio JL, Mizel DE, Anzano M, Greenwell-Wild T, Wahl SM, Deng C, Roberts AB: Mice lacking Smad3 show accelerated wound healing and an impaired local inflammatory response. Nat Cell Biol. 1999, 1: 260-266. 10.1038/12971.
Article
CAS
PubMed
Google Scholar
Tsuboi R, Shi CM, Sato C, Cox GN, Ogawa H: Co-administration of insulin-like growth factor (IGF)-I and IGF-binding protein-1 stimulates wound healing in animal models. J Invest Dermatol. 1995, 104: 199-203. 10.1111/1523-1747.ep12612755.
Article
CAS
PubMed
Google Scholar
Brown DL, Kane CD, Chernausek SD, Greenhalgh DG: Differential expression and localization of insulin-like growth factors I and II in cutaneous wounds of diabetic and nondiabetic mice. Am J Pathol. 1997, 151: 715-724.
PubMed Central
CAS
PubMed
Google Scholar
Ghahary A, Shen YJ, Wang R, Scott PG, Tredget EE: Expression and localization of insulin-like growth factor-1 in normal and post-burn hypertrophic scar tissue in human. Mol Cell Biochem. 1998, 183: 1-9. 10.1023/A:1006890212478.
Article
CAS
PubMed
Google Scholar
Blakytny R, Jude EB, Martin Gibson J, Boulton AJ, Ferguson MW: Lack of insulin-like growth factor 1 (IGF1) in the basal keratinocyte layer of diabetic skin and diabetic foot ulcers. J Pathol. 2000, 190: 589-594. 10.1002/(SICI)1096-9896(200004)190:5<589::AID-PATH553>3.0.CO;2-T.
Article
CAS
PubMed
Google Scholar
Bitar MS, Al-Mulla F: ROS constitute a convergence nexus in the development of IGF1 resistance and impaired wound healing in a rat model of type 2 diabetes. Dis Model Mech. 2012, 5: 375-388. 10.1242/dmm.007872.
Article
PubMed Central
CAS
PubMed
Google Scholar
Cambrey AD, Kwon OJ, Gray AJ, Harrison NK, Yacoub M, Barnes PJ, Laurent GJ, Chung KF: Insulin-like growth factor I is a major fibroblast mitogen produced by primary cultures of human airway epithelial cells. Clin Sci (Lond). 1995, 89: 611-617.
Article
CAS
Google Scholar
Wynes MW, Frankel SK, Riches DW: IL-4-induced macrophage-derived IGF-I protects myofibroblasts from apoptosis following growth factor withdrawal. J Leukoc Biol. 2004, 76: 1019-1027. 10.1189/jlb.0504288.
Article
CAS
PubMed
Google Scholar
Butt RP, Laurent GJ, Bishop JE: Mechanical load and polypeptide growth factors stimulate cardiac fibroblast activity. Ann N Y Acad Sci. 1995, 752: 387-393. 10.1111/j.1749-6632.1995.tb17446.x.
Article
CAS
PubMed
Google Scholar
Kanellakis P, Ditiatkovski M, Kostolias G, Bobik A: A pro-fibrotic role for interleukin-4 in cardiac pressure overload. Cardiovasc Res. 2012, 95: 77-85. 10.1093/cvr/cvs142.
Article
CAS
PubMed
Google Scholar
Vivar R, Humeres C, Varela M, Ayala P, Guzman N, Olmedo I, Catalan M, Boza P, Munoz C, Diaz Araya G: Cardiac fibroblast death by ischemia/reperfusion is partially inhibited by IGF-1 through both PI3K/Akt and MEK-ERK pathways. Exp Mol Pathol. 2012, 93: 1-7. 10.1016/j.yexmp.2012.01.010.
Article
CAS
PubMed
Google Scholar
Ito M, Kodama M, Tsumanuma I, Ramadan MM, Hirayama S, Kamimura T, Kashimura T, Fuse K, Hirono S, Okura Y, Aizawa Y: Relationship between insulin-like growth factor-I and brain natriuretic peptide in patients with acromegaly after surgery. Circ J. 2007, 71: 1955-1957. 10.1253/circj.71.1955.
Article
CAS
PubMed
Google Scholar
Delaughter MC, Taffet GE, Fiorotto ML, Entman ML, Schwartz RJ: Local insulin-like growth factor I expression induces physiologic, then pathologic, cardiac hypertrophy in transgenic mice. FASEB J. 1999, 13: 1923-1929.
CAS
PubMed
Google Scholar
Wang L, Ma W, Markovich R, Chen JW, Wang PH: Regulation of cardiomyocyte apoptotic signaling by insulin-like growth factor I. Circ Res. 1998, 83: 516-522. 10.1161/01.RES.83.5.516.
Article
CAS
PubMed
Google Scholar
Buerke M, Murohara T, Skurk C, Nuss C, Tomaselli K, Lefer AM: Cardioprotective effect of insulin-like growth factor I in myocardial ischemia followed by reperfusion. Proc Natl Acad Sci U S A. 1995, 92: 8031-8035. 10.1073/pnas.92.17.8031.
Article
PubMed Central
CAS
PubMed
Google Scholar
Huang G, Brigstock DR: Regulation of hepatic stellate cells by connective tissue growth factor. Front Biosci. 2012, 17: 2495-2507. 10.2741/4067.
Article
Google Scholar
Detillieux KA, Sheikh F, Kardami E, Cattini PA: Biological activities of fibroblast growth factor-2 in the adult myocardium. Cardiovasc Res. 2003, 57: 8-19. 10.1016/S0008-6363(02)00708-3.
Article
CAS
PubMed
Google Scholar
Abe M, Yokoyama Y, Ishikawa O: A possible mechanism of basic fibroblast growth factor-promoted scarless wound healing: the induction of myofibroblast apoptosis. Eur J Dermatol. 2012, 22: 46-53.
CAS
PubMed
Google Scholar
Yahata Y, Shirakata Y, Tokumaru S, Yang L, Dai X, Tohyama M, Tsuda T, Sayama K, Iwai M, Horiuchi M, Hashimoto K: A novel function of angiotensin II in skin wound healing. Induction of fibroblast and keratinocyte migration by angiotensin II via heparin-binding epidermal growth factor (EGF)-like growth factor-mediated EGF receptor transactivation. J Biol Chem. 2006, 281: 13209-13216. 10.1074/jbc.M509771200.
Article
CAS
PubMed
Google Scholar
Ivkovic S, Yoon BS, Popoff SN, Safadi FF, Libuda DE, Stephenson RC, Daluiski A, Lyons KM: Connective tissue growth factor coordinates chondrogenesis and angiogenesis during skeletal development. Development. 2003, 130: 2779-2791. 10.1242/dev.00505.
Article
PubMed Central
CAS
PubMed
Google Scholar
Hall-Glenn F, De Young RA, Huang BL, van Handel B, Hofmann JJ, Chen TT, Choi A, Ong JR, Benya PD, Mikkola H, et al: CCN2/connective tissue growth factor is essential for pericyte adhesion and endothelial basement membrane formation during angiogenesis. PLoS One. 2012, 7: e30562-10.1371/journal.pone.0030562.
Article
PubMed Central
CAS
PubMed
Google Scholar
Pi L, Shenoy AK, Liu J, Kim S, Nelson N, Xia H, Hauswirth WW, Petersen BE, Schultz GS, Scott EW: CCN2/CTGF regulates neovessel formation via targeting structurally conserved cystine knot motifs in multiple angiogenic regulators. FASEB J. 2012, 6: 3365-79.
Article
Google Scholar
House SL, Bolte C, Zhou M, Doetschman T, Klevitsky R, Newman G, Schultz Jel J: Cardiac-specific overexpression of fibroblast growth factor-2 protects against myocardial dysfunction and infarction in a murine model of low-flow ischemia. Circulation. 2003, 108: 3140-3148. 10.1161/01.CIR.0000105723.91637.1C.
Article
CAS
PubMed
Google Scholar
Padua RR, Sethi R, Dhalla NS, Kardami E: Basic fibroblast growth factor is cardioprotective in ischemia-reperfusion injury. Mol Cell Biochem. 1995, 143: 129-135. 10.1007/BF01816946.
Article
CAS
PubMed
Google Scholar
Luo K, Stroschein SL, Wang W, Chen D, Martens E, Zhou S, Zhou Q: The Ski oncoprotein interacts with the Smad proteins to repress TGFbeta signaling. Genes Dev. 1999, 13: 2196-2206. 10.1101/gad.13.17.2196.
Article
PubMed Central
CAS
PubMed
Google Scholar
Liu X, Zhang E, Li P, Liu J, Zhou P, Gu DY, Chen X, Cheng T, Zhou Y: Expression and possible mechanism of c-ski, a novel tissue repair-related gene during normal and radiation-impaired wound healing. Wound Repair Regen. 2006, 14: 162-171. 10.1111/j.1743-6109.2006.00106.x.
Article
PubMed
Google Scholar
Liu X, Li P, Liu P, Xiong R, Zhang E, Chen X, Gu D, Zhao Y, Wang Z, Zhou Y: The essential role for c-Ski in mediating TGF-beta1-induced bi-directional effects on skin fibroblast proliferation through a feedback loop. Biochem J. 2008, 409: 289-297. 10.1042/BJ20070545.
Article
CAS
PubMed
Google Scholar
Liu X, Li P, Chen XY, Zhou YG: c-Ski promotes skin fibroblast proliferation but decreases type I collagen: implications for wound healing and scar formation. Clin Exp Dermatol. 2010, 35: 417-424. 10.1111/j.1365-2230.2009.03606.x.
Article
CAS
PubMed
Google Scholar
Cunnington RH, Wang B, Ghavami S, Bathe KL, Rattan SG, Dixon IM: Antifibrotic properties of c-Ski and its regulation of cardiac myofibroblast phenotype and contractility. Am J Physiol Cell Physiol. 2011, 300: C176-C186. 10.1152/ajpcell.00050.2010.
Article
CAS
PubMed
Google Scholar
Miyazono K, Koinuma D: Arkadia–beyond the TGF-beta pathway. J Biochem. 2011, 149: 1-3. 10.1093/jb/mvq133.
Article
CAS
PubMed
Google Scholar
Cserjesi P, Brown D, Ligon KL, Lyons GE, Copeland NG, Gilbert DJ, Jenkins NA, Olson EN: Scleraxis: a basic helix-loop-helix protein that prefigures skeletal formation during mouse embryogenesis. Development. 1995, 121: 1099-1110.
CAS
PubMed
Google Scholar
Murchison ND, Price BA, Conner DA, Keene DR, Olson EN, Tabin CJ, Schweitzer R: Regulation of tendon differentiation by scleraxis distinguishes force-transmitting tendons from muscle-anchoring tendons. Development. 2007, 134: 2697-2708. 10.1242/dev.001933.
Article
CAS
PubMed
Google Scholar
Espira L, Lamoureux L, Jones SC, Gerard RD, Dixon IM, Czubryt MP: The basic helix-loop-helix transcription factor scleraxis regulates fibroblast collagen synthesis. J Mol Cell Cardiol. 2009, 47: 188-195. 10.1016/j.yjmcc.2009.03.024.
Article
CAS
PubMed
Google Scholar
Lejard V, Brideau G, Blais F, Salingcarnboriboon R, Wagner G, Roehrl MH, Noda M, Duprez D, Houillier P, Rossert J: Scleraxis and NFATc regulate the expression of the pro-alpha1(I) collagen gene in tendon fibroblasts. J Biol Chem. 2007, 282: 17665-17675. 10.1074/jbc.M610113200.
Article
CAS
PubMed
Google Scholar
Bagchi RA, Czubryt MP: Synergistic roles of scleraxis and Smads in the regulation of collagen 1alpha2 gene expression. Biochim Biophys Acta. 2012, 1823: 1936-1944. 10.1016/j.bbamcr.2012.07.002.
Article
CAS
PubMed
Google Scholar
Mendias CL, Gumucio JP, Davis ME, Bromley CW, Davis CS, Brooks SV: Transforming growth factor-beta induces skeletal muscle atrophy and fibrosis through the induction of atrogin-1 and scleraxis. Muscle Nerve. 2012, 45: 55-59. 10.1002/mus.22232.
Article
PubMed Central
CAS
PubMed
Google Scholar
Alberton P, Popov C, Pragert M, Kohler J, Shukunami C, Schieker M, Docheva D: Conversion of human bone marrow-derived mesenchymal stem cells into tendon progenitor cells by ectopic expression of scleraxis. Stem Cells Dev. 2012, 21: 846-858. 10.1089/scd.2011.0150.
Article
PubMed Central
CAS
PubMed
Google Scholar
Naitoh M, Kubota H, Ikeda M, Tanaka T, Shirane H, Suzuki S, Nagata K: Gene expression in human keloids is altered from dermal to chondrocytic and osteogenic lineage. Genes Cells. 2005, 10: 1081-1091. 10.1111/j.1365-2443.2005.00902.x.
Article
CAS
PubMed
Google Scholar
Scott A, Sampaio A, Abraham T, Duronio C, Underhill TM: Scleraxis expression is coordinately regulated in a murine model of patellar tendon injury. J Orthop Res. 2011, 29: 289-296. 10.1002/jor.21220.
Article
PubMed Central
PubMed
Google Scholar
Moellering RE, Cornejo M, Davis TN, Del Bianco C, Aster JC, Blacklow SC, Kung AL, Gilliland DG, Verdine GL, Bradner JE: Direct inhibition of the NOTCH transcription factor complex. Nature. 2009, 462: 182-188. 10.1038/nature08543.
Article
PubMed Central
CAS
PubMed
Google Scholar
Bishop JE, Laurent GJ: Collagen turnover and its regulation in the normal and hypertrophying heart. Eur Heart J. 1995, 16 (Suppl C): 38-44. 10.1093/eurheartj/16.suppl_C.38.
Article
CAS
PubMed
Google Scholar
McAnulty RJ, Laurent GJ: Collagen synthesis and degradation in vivo. Evidence for rapid rates of collagen turnover with extensive degradation of newly synthesized collagen in tissues of the adult rat. Coll Relat Res. 1987, 7: 93-104.
Article
CAS
PubMed
Google Scholar
Gulotta LV, Rodeo SA: Emerging ideas: evaluation of stem cells genetically modified with scleraxis to improve rotator cuff healing. Clin Orthop Relat Res. 2011, 469: 2977-2980. 10.1007/s11999-010-1727-4.
Article
PubMed Central
PubMed
Google Scholar