Du Cheyron D, Bouchet B, Parienti JJ, Ramakers M, Charbonneau P: The attributable mortality of acute renal failure in critically ill patients with liver cirrhosis. Intensive Care Med. 2005, 31: 1693-1699. 10.1007/s00134-005-2842-7.
PubMed
Google Scholar
Mehta RL, Chertow GM: Acute renal failure definitions and classification: time for change?. J Am Soc Nephrol. 2003, 14: 2178-2187. 10.1097/01.ASN.0000079042.13465.1A.
PubMed
Google Scholar
Silvester W, Bellomo R, Cole L: Epidemiology, management, and outcome of severe acute renal failure of critical illness in Australia. Crit Care Med. 2001, 29: 1910-1915. 10.1097/00003246-200110000-00010.
CAS
PubMed
Google Scholar
Ympa YP, Sakr Y, Reinhart K, Vincent JL: Has mortality from acute renal failure decreased? A systematic review of the literature. Am J Med. 2005, 118: 827-832. 10.1016/j.amjmed.2005.01.069.
PubMed
Google Scholar
Cheung CM, Ponnusamy A, Anderton JG: Management of Acute Renal Failure in the Elderly Patient: A Clinician's Guide. Drugs Aging. 2008, 25: 455-476. 10.2165/00002512-200825060-00002.
CAS
PubMed
Google Scholar
U. S. Renal Data System: USRDS 2008 Annual Data Report: Atlas of Chronic Kidney Disease and End-Stage Renal Disease in the United States. 2008, National Institutes of Health, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD
Google Scholar
U. S. Renal Data System: USRDS 2009 Annual Data Report: Atlas of Chronic Kidney Disease and End-Stage Renal Disease in the United States. 2009, National Institutes of Health, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD
Google Scholar
Bayat S, Kessler M, Briancon S, Frimat L: Survival of transplanted and dialysed patients in a French region with focus on outcomes in the elderly. Nephrol Dial Transplant. 2010, 25: 292-300. 10.1093/ndt/gfp469.
PubMed
Google Scholar
McDonald SP, Russ GR: Survival of recipients of cadaveric kidney transplants compared with those receiving dialysis treatment in Australia and New Zealand, 1991-2001. Nephrol Dial Transplant. 2002, 17: 2212-2219. 10.1093/ndt/17.12.2212.
PubMed
Google Scholar
Oniscu GC, Brown H, Forsythe JL: Impact of cadaveric renal transplantation on survival in patients listed for transplantation. J Am Soc Nephrol. 2005, 16: 1859-1865. 10.1681/ASN.2004121092.
PubMed
Google Scholar
Rabbat CG, Thorpe KE, Russell JD, Churchill DN: Comparison of mortality risk for dialysis patients and cadaveric first renal transplant recipients in Ontario, Canada. J Am Soc Nephrol. 2000, 11: 917-922.
CAS
PubMed
Google Scholar
Wolfe RA, Ashby VB, Milford EL, Ojo AO, Ettenger RE, Agodoa LY, Held PJ, Port FK: Comparison of mortality in all patients on dialysis, patients on dialysis awaiting transplantation, and recipients of a first cadaveric transplant. N Engl J Med. 1999, 341: 1725-1730. 10.1056/NEJM199912023412303.
CAS
PubMed
Google Scholar
Lin S: Nephrology in China: a great mission and momentous challenge. Kidney Int Suppl. 2003, 83: S108-S110. 10.1046/j.1523-1755.63.s83.22.x.
PubMed
Google Scholar
Rutkowski B: Changing pattern of end-stage renal disease in central and eastern Europe. Nephrol Dial Transplant. 2000, 15: 156-160. 10.1093/ndt/15.2.156.
CAS
PubMed
Google Scholar
Vathsala A: Twenty-five facts about kidney disease in Singapore: in remembrance of World Kidney Day. Ann Acad Med Singapore. 2007, 36: 157-160.
CAS
PubMed
Google Scholar
Tattersall J: Clearance of beta-2-microglobulin and middle molecules in haemodiafiltration. Hemodiafiltration. Edited by: Ronco C, Canaud B, Aljama P. 2007, Basel: Karger, 158: 201-209. full_text.
Google Scholar
Thomas G, Jaber BL: Convective therapies for removal of middle molecular weight uremic toxins in end-stage renal disease: a review of the evidence. Semin Dial. 2009, 22: 610-614. 10.1111/j.1525-139X.2009.00665.x.
PubMed
Google Scholar
Bayliss G, Danziger J: Nocturnal versus conventional haemodialysis: some current issues. Nephrol Dial Transplant. 2009, 24: 3612-3617. 10.1093/ndt/gfp491.
PubMed
Google Scholar
Klarenbach S, Manns B: Economic evaluation of dialysis therapies. Semin Nephrol. 2009, 29: 524-532. 10.1016/j.semnephrol.2009.06.009.
PubMed
Google Scholar
Kliger AS: More intensive hemodialysis. Clin J Am Soc Nephrol. 2009, 4 (Suppl 1): S121-S124. 10.2215/CJN.02920509.
PubMed
Google Scholar
Lockridge RS, Pipkin M: Short and long nightly hemodialysis in the United States. Hemodial Int. 2008, 12 (Suppl 1): S48-S50. 10.1111/j.1542-4758.2008.00296.x.
PubMed
Google Scholar
Pierratos A, Ouwendyk M, Francoeur R, Vas S, Raj DS, Ecclestone AM, Langos V, Uldall R: Nocturnal hemodialysis: three-year experience. J Am Soc Nephrol. 1998, 9: 859-868.
CAS
PubMed
Google Scholar
Uldall R, Ouwendyk M, Francoeur R, Wallace L, Sit W, Vas S, Pierratos A: Slow nocturnal home hemodialysis at the Wellesley Hospital. Adv Ren Replace Ther. 1996, 3: 133-136.
CAS
PubMed
Google Scholar
Jaber BL, Finkelstein FO, Glickman JD, Hull AR, Kraus MA, Leypoldt JK, Liu J, Gilbertson D, McCarthy J, Miller BW, Moran J, Collins AJ, FREEDOM Study Group: Scope and design of the Following Rehabilitation, Economics and Everyday-Dialysis Outcome Measurements (FREEDOM) Study. Am J Kidney Dis. 2009, 53: 310-320. 10.1053/j.ajkd.2008.07.013.
PubMed
Google Scholar
Kohn OF, Coe FL, Ing TS: Solute kinetics with short-daily home hemodialysis using slow dialysate flow rate. Hemodial Int. 2010, 14: 39-46. 10.1111/j.1542-4758.2009.00399.x.
PubMed
Google Scholar
Kraus M, Burkart J, Hegeman R, Solomon R, Coplon N, Moran J: A comparison of center-based vs. home-based daily hemodialysis for patients with end-stage renal disease. Hemodial Int. 2007, 11: 468-477. 10.1111/j.1542-4758.2007.00229.x.
PubMed
Google Scholar
Scott A: Portable home hemodialysis for kidney failure. Issues Emerg Health Technol. 2007, 108: 1-4.
PubMed
Google Scholar
Davenport A, Gura V, Ronco C, Beizai M, Ezon C, Rambod E: A wearable haemodialysis device for patients with end-stage renal failure: a pilot study. Lancet. 2007, 370: 2005-2010. 10.1016/S0140-6736(07)61864-9.
PubMed
Google Scholar
Gura V, Davenport A, Beizai M, Ezon C, Ronco C: β2-microglobulin and phosphate clearances using a wearable artificial kidney: a pilot study. Am J Kidney Dis. 2009, 54: 104-111. 10.1053/j.ajkd.2009.02.006.
CAS
PubMed
Google Scholar
Gura V, Macy AS, Beizai M, Ezon C, Golper TA: Technical breakthroughs in the wearable artificial kidney (WAK). Clin J Am Soc Nephrol. 2009, 4: 1441-1448. 10.2215/CJN.02790409.
PubMed Central
PubMed
Google Scholar
Gura V, Ronco C, Davenport A: The wearable artificial kidney, why and how: from holy grail to reality. Semin Dial. 2009, 22: 13-17. 10.1111/j.1525-139X.2008.00507.x.
PubMed
Google Scholar
Gura V, Ronco C, Nalesso F, Brendolan A, Beizai M, Ezon C, Davenport A, Rambod E: A wearable hemofilter for continuous ambulatory ultrafiltration. Kidney Int. 2008, 73: 497-502. 10.1038/sj.ki.5002711.
CAS
PubMed
Google Scholar
Ronco C, Davenport A, Gura V: A wearable artificial kidney: dream or reality?. Nat Clin Pract Nephrol. 2008, 4: 604-605. 10.1038/ncpneph0929.
PubMed
Google Scholar
Anzai N, Jutabha P, Kanai Y, Endou H: Integrated physiology of proximal tubular organic anion transport. Curr Opin Nephrol Hypertens. 2005, 14: 472-479. 10.1097/01.mnh.0000170751.56527.7e.
CAS
PubMed
Google Scholar
Lee YJ, Lee YJ, Han HJ: Regulatory mechanisms of Na+/glucose cotransporters in renal proximal tubule cells. Kidney Int Suppl. 2007, 72: S27-S35. 10.1038/sj.ki.5002383.
Google Scholar
Mount DB, Kwon CY, Zandi-Nejad K: Renal urate transport. Rheum Dis Clin North Am. 2006, 32: 313-331. 10.1016/j.rdc.2006.02.006. vi
PubMed
Google Scholar
Wilson CO, Block JH, Gisvold O, Beale JM: Wilson and Gisvold's textbook of organic medicinal and pharmaceutical chemistry. 2004, Philadelphia: Lippincott Williams and Wilkins, 11
Google Scholar
Wright SH: Role of organic cation transporters in the renal handling of therapeutic agents and xenobiotics. Toxicol Appl Pharmacol. 2005, 204: 309-319. 10.1016/j.taap.2004.10.021.
CAS
PubMed
Google Scholar
Curthoys NP, Godfrey SS: Properties of rat kidney glutaminase enzymes and their role in renal ammoniagenesis. Curr Probl Clin Biochem. 1976, 6: 346-356.
CAS
PubMed
Google Scholar
Soleimani M: Na+:HCO3- cotransporters (NBC): expression and regulation in the kidney. J Nephrol. 2002, 15 (Suppl 5): S32-S40.
CAS
PubMed
Google Scholar
Brenner BM: Brenner and Rector's The Kidney. 2008, Philadelphia: Saunders Elsevier, 8
Google Scholar
Fraser DR, Kodicek E: Unique biosynthesis by kidney of a biological active vitamin D metabolite. Nature. 1970, 228: 764-766. 10.1038/228764a0.
CAS
PubMed
Google Scholar
Gould SE, Day M, Jones SS, Dorai H: BMP-7 regulates chemokine, cytokine, and hemodynamic gene expression in proximal tubule cells. Kidney Int. 2002, 61: 51-60. 10.1046/j.1523-1755.2002.00103.x.
CAS
PubMed
Google Scholar
Simic P, Vukicevic S: Bone morphogenetic proteins in development and homeostasis of kidney. Cytokine Growth Factor Rev. 2005, 16: 299-308. 10.1016/j.cytogfr.2005.02.010.
CAS
PubMed
Google Scholar
Simon M, Maresh JG, Harris SE, Hernandez JD, Arar M, Olson MS, Abboud HE: Expression of bone morphogenetic protein-7 mRNA in normal and ischemic adult rat kidney. Am J Physiol. 1999, 276: F382-F389.
CAS
PubMed
Google Scholar
Boswell RN, Yard BA, Schrama E, van Es LA, Daha MR, van der Woude FJ: Interleukin 6 production by human proximal tubular epithelial cells in vitro: analysis of the effects of interleukin-1α (IL-1α) and other cytokines. Nephrol Dial Transplant. 1994, 9: 599-606.
CAS
PubMed
Google Scholar
Prodjosudjadi W, Gerritsma JS, Klar-Mohamad N, Gerritsen AF, Bruijn JA, Daha MR, van Es LA: Production and cytokine-mediated regulation of monocyte chemoattractant protein-1 by human proximal tubular epithelial cells. Kidney Int. 1995, 48: 1477-1486. 10.1038/ki.1995.437.
CAS
PubMed
Google Scholar
Van Kooten C, Woltman AM, Daha MR: Immunological function of tubular epithelial cells: the functional implications of CD40 expression. Exp Nephrol. 2000, 8: 203-207. 10.1159/000020669.
CAS
PubMed
Google Scholar
Wahl P, Schoop R, Bilic G, Neuweiler J, Le Hir M, Yoshinaga SK, Wuthrich RP: Renal tubular epithelial expression of the costimulatory molecule B7RP-1 (inducible costimulator ligand). J Am Soc Nephrol. 2002, 13: 1517-1526. 10.1097/01.ASN.0000017901.77985F.
CAS
PubMed
Google Scholar
Wuthrich RP, Glimcher LH, Yui MA, Jevnikar AM, Dumas SE, Kelley VE: MHC class II, antigen presentation and tumor necrosis factor in renal tubular epithelial cells. Kidney Int. 1990, 37: 783-792. 10.1038/ki.1990.46.
CAS
PubMed
Google Scholar
Aebischer P, Ip TK, Panol G, Galletti PM: The bioartificial kidney: progress towards an ultrafiltration device with renal epithelial cells processing. Life Support Syst. 1987, 5: 159-168.
CAS
PubMed
Google Scholar
Ip TK, Aebischer P, Galletti PM: Cellular control of membrane permeability. Implications for a bioartificial renal tubule. ASAIO Trans. 1988, 34: 351-355.
CAS
PubMed
Google Scholar
Ip TK, Aebischer P: Renal epithelial-cell-controlled solute transport across permeable membranes as the foundation for a bioartificial kidney. Artif Organs. 1989, 13: 58-65. 10.1111/j.1525-1594.1989.tb02833.x.
CAS
PubMed
Google Scholar
Uludag H, Ip TK, Aebischer P: Transport functions in a bioartificial kidney under uremic conditions. Int J Artif Organs. 1990, 13: 93-97.
CAS
PubMed
Google Scholar
Uludag H, Panol G, Aebischer P: Control of water flux in a bioartificial kidney. ASAIO Trans. 1989, 35: 523-527. 10.1097/00002480-198907000-00113.
CAS
PubMed
Google Scholar
Berndt WO: The role of transport in chemical nephrotoxicity. Toxicol Pathol. 1998, 26: 52-57. 10.1177/019262339802600107.
CAS
PubMed
Google Scholar
Curthoys NP: Role of gamma-glutamyltranspeptidase in the renal metabolism of glutathione. Miner Electrolyte Metab. 1983, 9: 236-245.
CAS
PubMed
Google Scholar
Humes HD, Buffington DA, MacKay SM, Funke AJ, Weitzel WF: Replacement of renal function in uremic animals with a tissue-engineered kidney. Nat Biotechnol. 1999, 17: 451-455. 10.1038/8626.
CAS
PubMed
Google Scholar
Humes HD, MacKay SM, Funke AJ, Buffington DA: Tissue engineering of a bioartificial renal tubule assist device: in vitro transport and metabolic characteristics. Kidney Int. 1999, 55: 2502-2514. 10.1046/j.1523-1755.1999.00486.x.
CAS
PubMed
Google Scholar
Fujita Y, Kakuta T, Asano M, Itoh J, Sakabe K, Tokimasa T, Saito A: Evaluation of Na+ active transport and morphological changes for bioartificial renal tubule cell device using Madin-Darby canine kidney cells. Tissue Eng. 2002, 8: 13-24. 10.1089/107632702753503018.
CAS
PubMed
Google Scholar
Saito A, Aung T, Sekiguchi K, Sato Y, Vu DM, Inagaki M, Kanai G, Tanaka R, Suzuki H, Kakuta T: Present status and perspectives of bioartificial kidneys. J Artif Organs. 2006, 9: 130-135. 10.1007/s10047-006-0336-1.
PubMed
Google Scholar
Fujita Y, Terashima M, Kakuta T, Itoh J, Tokimasa T, Brown D, Saito A: Transcellular water transport and stability of expression in aquaporin 1-transfected LLC-PK1 cells in the development of a portable bioartificial renal tubule device. Tissue Eng. 2004, 10: 711-722. 10.1089/1076327041348383.
CAS
PubMed
Google Scholar
Ozgen N, Terashima M, Aung T, Sato Y, Isoe C, Kakuta T, Saito A: Evaluation of long-term transport ability of a bioartificial renal tubule device using LLC-PK1 cells. Nephrol Dial Transplant. 2004, 19: 2198-2207. 10.1093/ndt/gfh399.
CAS
PubMed
Google Scholar
Terashima M, Fujita Y, Sugano K, Asano M, Kagiwada N, Sheng Y, Nakamura S, Hasegawa A, Kakuta T, Saito A: Evaluation of water and electrolyte transport of tubular epithelial cells under osmotic and hydraulic pressure for development of bioartificial tubules. Artif Organs. 2001, 25: 209-212. 10.1046/j.1525-1594.2001.025003209.x.
CAS
PubMed
Google Scholar
Inagaki M, Yokoyama TA, Sawada K, Duc VM, Kanai G, Lu J, Kakuta T, Saito A: Prevention of LLC-PK1 cell overgrowth in a bioartificial renal tubule device using a MEK inhibitor, U0126. J Biotechnol. 2007, 132: 57-64. 10.1016/j.jbiotec.2007.08.025.
CAS
PubMed
Google Scholar
Kanai N, Fujita Y, Kakuta T, Saito A: The effects of various extracellular matrices on renal cell attachment to polymer surfaces during the development of bioartificial renal tubules. Artif Organs. 1999, 23: 114-118. 10.1046/j.1525-1594.1999.06259.x.
CAS
PubMed
Google Scholar
Sato Y, Terashima M, Kagiwada N, Tun T, Inagaki M, Kakuta T, Saito A: Evaluation of proliferation and functional differentiation of LLC-PK1 cells on porous polymer membranes for the development of a bioartificial renal tubule device. Tissue Eng. 2005, 11: 1506-1515. 10.1089/ten.2005.11.1506.
CAS
PubMed
Google Scholar
Ueda H, Watanabe J, Konno T, Takai M, Saito A, Ishihara K: Asymmetrically functional surface properties on biocompatible phospholipid polymer membrane for bioartificial kidney. J Biomed Mater Res A. 2006, 77: 19-27.
PubMed
Google Scholar
Saito A: Development of bioartificial kidneys. Nephrology (Carlton). 2003, 8 (Suppl): S10-S15. 10.1046/j.1440-1797.8.s.4.x.
CAS
Google Scholar
Saito A: Research into the development of a wearable bioartificial kidney with a continuous hemofilter and a bioartificial tubule device using tubular epithelial cells. Artif Organs. 2004, 28: 58-63. 10.1111/j.1525-1594.2004.07323.x.
PubMed
Google Scholar
Saito A, Aung T, Sekiguchi K, Sato Y: Present status and perspective of the development of a bioartificial kidney for chronic renal failure patients. Ther Apher Dial. 2006, 10: 342-347. 10.1111/j.1744-9987.2006.00387.x.
PubMed
Google Scholar
MacKay SM, Funke AJ, Buffington DA, Humes HD: Tissue engineering of a bioartificial renal tubule. ASAIO J. 1998, 44: 179-183. 10.1097/00002480-199805000-00011.
CAS
PubMed
Google Scholar
Humes HD, MacKay SM, Funke AJ, Buffington DA: Acute renal failure: growth factors, cell therapy, and gene therapy. Proc Assoc Am Physicians. 1997, 109: 547-557.
CAS
PubMed
Google Scholar
Fissell WH, Lou L, Abrishami S, Buffington DA, Humes HD: Bioartificial kidney ameliorates gram-negative bacteria-induced septic shock in uremic animals. J Am Soc Nephrol. 2003, 14: 454-461. 10.1097/01.ASN.0000045046.94575.96.
PubMed
Google Scholar
Fissell WH, Dyke DB, Weitzel WF, Buffington DA, Westover AJ, MacKay SM, Gutierrez JM, Humes HD: Bioartificial kidney alters cytokine response and hemodynamics in endotoxin-challenged uremic animals. Blood Purif. 2002, 20: 55-60. 10.1159/000046986.
CAS
PubMed
Google Scholar
Tumlin J, Wali R, Williams W, Murray P, Tolwani AJ, Vinnikova AK, Szerlip HM, Ye J, Paganini EP, Dworkin L, Finkel KW, Kraus MA, Humes HD: Efficacy and safety of renal tubule cell therapy for acute renal failure. J Am Soc Nephrol. 2008, 19: 1034-1040. 10.1681/ASN.2007080895.
PubMed Central
PubMed
Google Scholar
Humes HD, Fissell WH, Weitzel WF, Buffington DA, Westover AJ, MacKay SM, Gutierrez JM: Metabolic replacement of kidney function in uremic animals with a bioartificial kidney containing human cells. Am J Kidney Dis. 2002, 39: 1078-1087. 10.1053/ajkd.2002.32792.
PubMed
Google Scholar
Humes HD, Weitzel WF, Bartlett RH, Swaniker FC, Paganini EP, Luderer JR, Sobota J: Initial clinical results of the bioartificial kidney containing human cells in ICU patients with acute renal failure. Kidney Int. 2004, 66: 1578-1588. 10.1111/j.1523-1755.2004.00923.x.
CAS
PubMed
Google Scholar
Song JH, Humes HD: The bioartificial kidney in the treatment of acute kidney injury. Curr Drug Targets. 2009, 10: 1227-1234. 10.2174/138945009789753273.
PubMed Central
CAS
PubMed
Google Scholar
Dong X, Chen J, He Q, Yang Y, Zhang W: Construction of bioartificial renal tubule assist device in vitro and its function of transporting sodium and glucose. J Huazhong Univ Sci Technolog Med Sci. 2009, 29: 517-521. 10.1007/s11596-009-0425-5.
PubMed
Google Scholar
Huijuan M, Xiaoyun W, Xumin Y, Hengjin W, Xia S: Effect of continuous bioartificial kidney therapy on porcine multiple organ dysfunction syndrome with acute renal failure. ASAIO J. 2007, 53: 329-334. 10.1097/MAT.0b013e3180590be5.
PubMed
Google Scholar
Tsuruoka S, Nishiki K, Sugimoto K, Suzuki M, Imai M, Fujimura A: Specific therapy of digoxin intoxication in dogs by hybrid kidney overexpressing multidrug resistance protein. Kidney Int. 2002, 62: 1332-1337. 10.1111/j.1523-1755.2002.kid570.x.
CAS
PubMed
Google Scholar
Tsuruoka S, Nishiki K, Wakaumi M, Wang N, Yamamoto H, Ando H, Imai M, Fujimura A: Treatment of digoxin intoxication model by hybrid-kidney with hollowfibre module for clinical haemodialysis. Nephrol Dial Transplant. 2004, 19: 1339-1340. 10.1093/ndt/gfh135.
PubMed
Google Scholar
Tsuruoka S, Sugimoto KI, Ueda K, Suzuki M, Imai M, Fujimura A: Removal of digoxin and doxorubicin by multidrug resistance protein-overexpressed cell culture in hollow fiber. Kidney Int. 1999, 56: 154-163. 10.1046/j.1523-1755.1999.00516.x.
CAS
PubMed
Google Scholar
Vu DM, Masuda H, Yokoyama TA, Fujimura S, Kobori M, Ito R, Sawada K, Saito A, Asahara T: CD133+ endothelial progenitor cells as a potential cell source for a bioartificial glomerulus. Tissue Eng Part A. 2009, 15: 3173-3182. 10.1089/ten.tea.2009.0050.
CAS
PubMed
Google Scholar
Weinberg E, Kaazempur-Mofrad M, Borenstein J: Concept and computational design for a bioartificial nephron-on-a-chip. Int J Artif Organs. 2008, 31: 508-514.
CAS
PubMed
Google Scholar
Chertow GM, Waikar SS: Toward the promise of renal replacement therapy. J Am Soc Nephrol. 2008, 19: 839-840. 10.1681/ASN.2008030291.
PubMed
Google Scholar
Humes HD, Sobota JT, Ding F, Song JH: A selective cytopheretic inhibitory device to treat the immunological dysregulation of acute and chronic renal failure. Blood Purif. 2010, 29: 183-190. 10.1159/000245645.
PubMed
Google Scholar
Song JH, Humes HD: Renal cell therapy and beyond. Semin Dial. 2009, 22: 603-609. 10.1111/j.1525-139X.2009.00663.x.
PubMed Central
PubMed
Google Scholar
Oudemans-van Straaten HM, Bosman RJ, Koopmans M, van der Voort PH, Wester JP, van der Spoel JI, Dijksman LM, Zandstra DF: Citrate anticoagulation for continuous venovenous hemofiltration. Crit Care Med. 2009, 37: 545-552. 10.1097/CCM.0b013e3181953c5e.
CAS
PubMed
Google Scholar
Zhang H, Tasnim F, Ying JY, Zink D: The impact of extracellular matrix coatings on the performance of human renal cells applied in bioartificial kidneys. Biomaterials. 2009, 30: 2899-2911. 10.1016/j.biomaterials.2009.01.046.
CAS
PubMed
Google Scholar
Bach PH, Obatomi DK, Brant S: In vitro methods for nephrotoxicity screening and risk assessment. In vitro methods in pharmaceutical research. Edited by: Castell JV, Gómez-Lechón MJ. 1997, San Diego: Academic Press, 55-101.
Google Scholar
Vesey DA, Qi W, Chen X, Pollock CA, Johnson DW: Isolation and primary culture of human proximal tubule cells. Methods Mol Biol. 2009, 466: 19-24.
CAS
PubMed
Google Scholar
Weiland C, Ahr HJ, Vohr HW, Ellinger-Ziegelbauer H: Characterization of primary rat proximal tubular cells by gene expression analysis. Toxicol In Vitro. 2007, 21: 466-491. 10.1016/j.tiv.2006.10.008.
CAS
PubMed
Google Scholar
Verhulst A, Sayer R, De Broe ME, D'Haese PC, Brown CD: Human proximal tubular epithelium actively secretes but does not retain rosuvastatin. Mol Pharmacol. 2008, 74: 1084-1091. 10.1124/mol.108.047647.
CAS
PubMed
Google Scholar
Zhang H, Lau SF, Heng BF, Teo PY, Alahakoon PK, Ni M, Tasnim F, Ying JY, Zink D: Generation of easily accessible human kidney tubules on two-dimensional surfaces in vitro. J Cell Mol Med. 2010.
Google Scholar
Humes HD, Cieslinski DA: Interaction between growth factors and retinoic acid in the induction of kidney tubulogenesis in tissue culture. Exp Cell Res. 1992, 201: 8-15. 10.1016/0014-4827(92)90342-6.
CAS
PubMed
Google Scholar
Wang S, Hirschberg R: BMP7 antagonizes TGF-β-dependent fibrogenesis in mesangial cells. Am J Physiol Renal Physiol. 2003, 284: F1006-F1013.
CAS
PubMed
Google Scholar
Wang S, Hirschberg R: Bone morphogenetic protein-7 signals opposing transforming growth factor β in mesangial cells. J Biol Chem. 2004, 279: 23200-23206. 10.1074/jbc.M311998200.
CAS
PubMed
Google Scholar
Zeisberg M, Hanai J, Sugimoto H, Mammoto T, Charytan D, Strutz F, Kalluri R: BMP-7 counteracts TGF-β1-induced epithelial-to-mesenchymal transition and reverses chronic renal injury. Nat Med. 2003, 9: 964-968. 10.1038/nm888.
CAS
PubMed
Google Scholar
Flier SN, Tanjore H, Kokkotou EG, Sugimoto H, Zeisberg M, Kalluri R: Identification of epithelial to mesenchymal transition as a novel source of fibroblasts in intestinal fibrosis. J Biol Chem. 2010, 285: 20202-20212. 10.1074/jbc.M110.102012.
PubMed Central
CAS
PubMed
Google Scholar
Hruska KA, Guo G, Wozniak M, Martin D, Miller S, Liapis H, Loveday K, Klahr S, Sampath TK, Morrissey J: Osteogenic protein-1 prevents renal fibrogenesis associated with ureteral obstruction. Am J Physiol Renal Physiol. 2000, 279: F130-F143.
CAS
PubMed
Google Scholar
Morrissey J, Hruska K, Guo G, Wang S, Chen Q, Klahr S: Bone morphogenetic protein-7 improves renal fibrosis and accelerates the return of renal function. J Am Soc Nephrol. 2002, 13 (Suppl 1): S14-S21.
CAS
PubMed
Google Scholar
Wang S, Chen Q, Simon TC, Strebeck F, Chaudhary L, Morrissey J, Liapis H, Klahr S, Hruska KA: Bone morphogenic protein-7 (BMP-7), a novel therapy for diabetic nephropathy. Kidney Int. 2003, 63: 2037-2049. 10.1046/j.1523-1755.2003.00035.x.
CAS
PubMed
Google Scholar
Zeisberg M, Bottiglio C, Kumar N, Maeshima Y, Strutz F, Muller GA, Kalluri R: Bone morphogenic protein-7 inhibits progression of chronic renal fibrosis associated with two genetic mouse models. Am J Physiol Renal Physiol. 2003, 285: F1060-F1067.
CAS
PubMed
Google Scholar
Zeisberg M, Kalluri R: Reversal of experimental renal fibrosis by BMP7 provides insights into novel therapeutic strategies for chronic kidney disease. Pediatr Nephrol. 2008, 23: 1395-1398. 10.1007/s00467-008-0818-x.
PubMed
Google Scholar
Vukicevic S, Basic V, Rogic D, Basic N, Shih MS, Shepard A, Jin D, Dattatreyamurty B, Jones W, Dorai H, Ryan S, Griffiths D, Maliakal J, Jelic M, Pastorcic M, Stavljenic A, Sampath TK: Osteogenic protein-1 (bone morphogenetic protein-7) reduces severity of injury after ischemic acute renal failure in rat. J Clin Invest. 1998, 102: 202-214. 10.1172/JCI2237.
PubMed Central
CAS
PubMed
Google Scholar
Davies MR, Lund RJ, Hruska KA: BMP-7 is an efficacious treatment of vascular calcification in a murine model of atherosclerosis and chronic renal failure. J Am Soc Nephrol. 2003, 14: 1559-1567. 10.1097/01.ASN.0000068404.57780.DD.
PubMed
Google Scholar
Davies MR, Lund RJ, Mathew S, Hruska KA: Low turnover osteodystrophy and vascular calcification are amenable to skeletal anabolism in an animal model of chronic kidney disease and the metabolic syndrome. J Am Soc Nephrol. 2005, 16: 917-928. 10.1681/ASN.2004100835.
CAS
PubMed
Google Scholar
Gonzalez EA, Lund RJ, Martin KJ, McCartney JE, Tondravi MM, Sampath TK, Hruska KA: Treatment of a murine model of high-turnover renal osteodystrophy by exogenous BMP-7. Kidney Int. 2002, 61: 1322-1331. 10.1046/j.1523-1755.2002.00258.x.
CAS
PubMed
Google Scholar
Hruska KA, Mathew S, Davies MR, Lund RJ: Connections between vascular calcification and progression of chronic kidney disease: therapeutic alternatives. Kidney Int Suppl. 2005, S142-S151. 10.1111/j.1523-1755.2005.09926.x.
Google Scholar
Hruska KA, Saab G, Chaudhary LR, Quinn CO, Lund RJ, Surendran K: Kidney-bone, bone-kidney, and cell-cell communications in renal osteodystrophy. Semin Nephrol. 2004, 24: 25-38. 10.1053/j.semnephrol.2003.08.010.
PubMed
Google Scholar
Li T, Surendran K, Zawaideh MA, Mathew S, Hruska KA: Bone morphogenetic protein 7: a novel treatment for chronic renal and bone disease. Curr Opin Nephrol Hypertens. 2004, 13: 417-422. 10.1097/01.mnh.0000133974.24935.fe.
CAS
PubMed
Google Scholar
Mathew S, Davies M, Lund R, Saab G, Hruska KA: Function and effect of bone morphogenetic protein-7 in kidney bone and the bone-vascular links in chronic kidney disease. Eur J Clin Invest. 2006, 36 (Suppl 2): 43-50. 10.1111/j.1365-2362.2006.01663.x.
CAS
PubMed
Google Scholar
Ryan MJ, Johnson G, Kirk J, Fuerstenberg SM, Zager RA, Torok-Storb B: HK-2: an immortalized proximal tubule epithelial cell line from normal adult human kidney. Kidney Int. 1994, 45: 48-57. 10.1038/ki.1994.6.
CAS
PubMed
Google Scholar
Racusen LC, Monteil C, Sgrignoli A, Lucskay M, Marouillat S, Rhim JG, Morin JP: Cell lines with extended in vitro growth potential from human renal proximal tubule: characterization, response to inducers, and comparison with established cell lines. J Lab Clin Med. 1997, 129: 318-329. 10.1016/S0022-2143(97)90180-3.
CAS
PubMed
Google Scholar
Kowolik CM, Liang S, Yu Y, Yee JK: Cre-mediated reversible immortalization of human renal proximal tubular epithelial cells. Oncogene. 2004, 23: 5950-5957. 10.1038/sj.onc.1207801.
CAS
PubMed
Google Scholar
Wieser M, Stadler G, Jennings P, Streubel B, Pfaller W, Ambros P, Riedl C, Katinger H, Grillari J, Grillari-Voglauer R: hTERT alone immortalizes epithelial cells of renal proximal tubules without changing their functional characteristics. Am J Physiol Renal Physiol. 2008, 295: F1365-F1375. 10.1152/ajprenal.90405.2008.
CAS
PubMed
Google Scholar
Orosz DE, Woost PG, Kolb RJ, Finesilver MB, Jin W, Frisa PS, Choo CK, Yau CF, Chan KW, Resnick MI, Douglas JG, Edwards JC, Jacobberger JW, Hopfer U: Growth, immortalization, and differentiation potential of normal adult human proximal tubule cells. In Vitro Cell Dev Biol Anim. 2004, 40: 22-34. 10.1290/1543-706X(2004)40<22:GIADPO>2.0.CO;2.
CAS
PubMed
Google Scholar
Wilmer MJ, Saleem MA, Masereeuw R, Ni L, van der Velden TJ, Russel FG, Mathieson PW, Monnens LA, van den Heuvel LP, Levtchenko EN: Novel conditionally immortalized human proximal tubule cell line expressing functional influx and efflux transporters. Cell Tissue Res. 2010, 339: 449-457. 10.1007/s00441-009-0882-y.
PubMed Central
PubMed
Google Scholar
Chassin C, Bens M, Vandewalle A: Transimmortalized proximal tubule and collecting duct cell lines derived from the kidneys of transgenic mice. Cell Biol Toxicol. 2007, 23: 257-266. 10.1007/s10565-006-0169-y.
CAS
PubMed
Google Scholar
Kim D, Dressler GR: Nephrogenic factors promote differentiation of mouse embryonic stem cells into renal epithelia. J Am Soc Nephrol. 2005, 16: 3527-3534. 10.1681/ASN.2005050544.
CAS
PubMed
Google Scholar
Batchelder CA, Lee CC, Matsell DG, Yoder MC, Tarantal AF: Renal ontogeny in the rhesus monkey (Macaca mulatta) and directed differentiation of human embryonic stem cells towards kidney precursors. Differentiation. 2009, 78: 45-56. 10.1016/j.diff.2009.05.001.
PubMed Central
CAS
PubMed
Google Scholar
Carroll TJ, Park JS, Hayashi S, Majumdar A, McMahon AP: Wnt9b plays a central role in the regulation of mesenchymal to epithelial transitions underlying organogenesis of the mammalian urogenital system. Dev Cell. 2005, 9: 283-292. 10.1016/j.devcel.2005.05.016.
CAS
PubMed
Google Scholar
Park JS, Valerius MT, McMahon AP: Wnt/β-catenin signaling regulates nephron induction during mouse kidney development. Development. 2007, 134: 2533-2539. 10.1242/dev.006155.
CAS
PubMed
Google Scholar
Benzing T, Simons M, Walz G: Wnt signaling in polycystic kidney disease. J Am Soc Nephrol. 2007, 18: 1389-1398. 10.1681/ASN.2006121355.
CAS
PubMed
Google Scholar
Yokoo T, Fukui A, Ohashi T, Miyazaki Y, Utsunomiya Y, Kawamura T, Hosoya T, Okabe M, Kobayashi E: Xenobiotic kidney organogenesis from human mesenchymal stem cells using a growing rodent embryo. J Am Soc Nephrol. 2006, 17: 1026-1034. 10.1681/ASN.2005101043.
PubMed
Google Scholar
Yokoo T, Ohashi T, Shen JS, Sakurai K, Miyazaki Y, Utsunomiya Y, Takahashi M, Terada Y, Eto Y, Kawamura T, Osumi N, Hosoya T: Human mesenchymal stem cells in rodent whole-embryo culture are reprogrammed to contribute to kidney tissues. Proc Natl Acad Sci USA. 2005, 102: 3296-3300. 10.1073/pnas.0406878102.
PubMed Central
CAS
PubMed
Google Scholar
Baer PC, Bereiter-Hahn J, Missler C, Brzoska M, Schubert R, Gauer S, Geiger H: Conditioned medium from renal tubular epithelial cells initiates differentiation of human mesenchymal stem cells. Cell Prolif. 2009, 42: 29-37. 10.1111/j.1365-2184.2008.00572.x.
CAS
PubMed
Google Scholar
Fusaki N, Ban H, Nishiyama A, Saeki K, Hasegawa M: Efficient induction of transgene-free human pluripotent stem cells using a vector based on Sendai virus, an RNA virus that does not integrate into the host genome. Proc Jpn Acad Ser B Phys Biol Sci. 2009, 85: 348-362. 10.2183/pjab.85.348.
PubMed Central
CAS
PubMed
Google Scholar
Jia F, Wilson KD, Sun N, Gupta DM, Huang M, Li Z, Panetta NJ, Chen ZY, Robbins RC, Kay MA, Longaker MT, Wu JC: A nonviral minicircle vector for deriving human iPS cells. Nat Methods. 7: 197-199. 10.1038/nmeth.1426.
Marchetto MC, Yeo GW, Kainohana O, Marsala M, Gage FH, Muotri AR: Transcriptional signature and memory retention of human-induced pluripotent stem cells. PLoS One. 2009, 4: e7076-10.1371/journal.pone.0007076.
PubMed Central
PubMed
Google Scholar
Yusa K, Rad R, Takeda J, Bradley A: Generation of transgene-free induced pluripotent mouse stem cells by the piggyBac transposon. Nat Methods. 2009, 6: 363-369. 10.1038/nmeth.1323.
PubMed Central
CAS
PubMed
Google Scholar
Yu J, Hu K, Smuga-Otto K, Tian S, Stewart R, Slukvin II, Thomson JA: Human induced pluripotent stem cells free of vector and transgene sequences. Science. 2009, 324: 797-801. 10.1126/science.1172482.
PubMed Central
CAS
PubMed
Google Scholar
Ronco C, Ballestri M, Cappelli G: Dialysis membranes in convective treatments. Nephrol Dial Transplant. 2000, 15 (Suppl 2): 31-36. 10.1093/ndt/15.suppl_1.31.
PubMed
Google Scholar
Li DF, Chung T-S, Wang R, Liu Y: Fabrication of fluoropolyimide/polyethersulfone (PES) dual-layer asymmetric hollow fiber membranes for gas separation. J Membr Sci. 2002, 198: 211-223. 10.1016/S0376-7388(01)00658-5.
CAS
Google Scholar
Yang Q, Wang KY, Chung T-S: Dual-layer hollow fibers with enhanced flux as novel forward osmosis membranes for water production. Environ Sci Technol. 2009, 43: 2800-2805. 10.1021/es803360t.
CAS
PubMed
Google Scholar
Fissell WH, Manley S, Westover A, Humes HD, Fleischman AJ, Roy S: Differentiated growth of human renal tubule cells on thin-film and nanostructured materials. ASAIO J. 2006, 52: 221-227. 10.1097/01.mat.0000205228.30516.9c.
CAS
PubMed
Google Scholar
Kanani DM, Fissell WH, Roy S, Dubnisheva A, Fleischman A, Zydney AL: Permeability-selectivity analysis for ultrafiltration: effect of pore geometry. J Memb Sci. 2010, 349: 405-10.1016/j.memsci.2009.12.003.
PubMed Central
CAS
PubMed
Google Scholar
Fissell WH, Fleischman AJ, Humes HD, Roy S: Development of continuous implantable renal replacement: past and future. Transl Res. 2007, 150: 327-336. 10.1016/j.trsl.2007.06.001.
PubMed
Google Scholar
Fissell WH, Roy S: The implantable artificial kidney. Semin Dial. 2009, 22: 665-670. 10.1111/j.1525-139X.2009.00662.x.
PubMed
Google Scholar
Minuth WW, Schumacher K, Strehl R: Renal epithelia in long term gradient culture for biomaterial testing and tissue engineering. Biomed Mater Eng. 2005, 15: 51-63.
PubMed
Google Scholar
Minuth WW, Strehl R: Technical and theoretical considerations about gradient perfusion culture for epithelia used in tissue engineering, biomaterial testing and pharmaceutical research. Biomed Mater. 2007, 2: R1-R11. 10.1088/1748-6041/2/2/R01.
CAS
PubMed
Google Scholar
Minuth WW, Strehl R, Schumacher K, de Vries U: Long term culture of epithelia in a continuous fluid gradient for biomaterial testing and tissue engineering. J Biomater Sci Polym Ed. 2001, 12: 353-365. 10.1163/156856201750180861.
CAS
PubMed
Google Scholar