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Abstract

Background: Fibrosis poses a substantial setback in regenerative medicine. Histopathologically, fibrosis is an

excessive accumulation of collagen affected by myofibroblasts and this can occur in any tissue that is exposed to
chronic injury or insult. Transforming growth factor (TGF)-31, a crucial mediator of fibrosis, drives differentiation of
fibroblasts into myofibroblasts. These cells exhibit a-smooth muscle actin (a-SMA) and synthesize high amounts of
collagen I, the major extracellular matrix (ECM) component of fibrosis. While hormones stimulate cells in a pulsatile
manner, little is known about cellular response kinetics upon growth factor impact. We therefore studied the effects
of short TGF-B1 pulses in terms of the induction and maintenance of the myofibroblast phenotype.

Results: Twenty-four hours after a single 30 min TGF-31 pulse, transcription of fibrogenic genes was upregulated,
but subsided 7 days later. In parallel, collagen | secretion rate and a-SMA presence were elevated for 7 days. A
second pulse 24 h later extended the duration of effects to 14 days. We could not establish epigenetic changes on

Cytokine

fibrogenic target genes to explain the long-lasting effects. However, ECM deposited under singly pulsed TGF-{31
was able to induce myofibroblast features in previously untreated fibroblasts. Dependent on the age of the ECM
(1 day versus 7 days' formation time), this property was diminished. Vice versa, myofibroblasts were cultured on
fibroblast ECM and cells observed to express reduced (in comparison with myofibroblasts) levels of collagen I.

Conclusions: We demonstrated that short TGF-31 pulses can exert long-lasting effects on fibroblasts by changing
their microenvironment, thus leaving an imprint and creating a reciprocal feed-back loop. Therefore, the ECM might
act as mid-term memory for pathobiochemical events. We would expect this microenvironmental memory to be
dependent on matrix turnover and, as such, to be erasable. Our findings contribute to the current understanding of
fibroblast induction and maintenance, and have bearing on the development of antifibrotic drugs.
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Background

Tissue repair is a physiological response to tissue dam-
age. It starts with cell infiltration and inflammation at
the site of the lesion, progresses with the formation of
extracellular matrix (ECM) and ends with its remodel-
ing, leaving a localized scar. When this response is trig-
gered repeatedly or perpetuated, fibrosis ensues. The
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worldwide clinical burden of fibrosis is substantial with
at least 5 million cases of idiopathic lung fibrosis [1],
and 170 million people with chronic hepatitis C at
risk for liver cirrhosis [2]. Fibrosis around implants
can effectively sequester them from surrounding tis-
sue and impede their function [3-6]. Amongst vari-
ous cytokines implicated in fibrosis, transforming
growth factor-pl1 (TGF-PB1) is the most notorious. It
facilitates the differentiation of fibroblasts, hepatic
stellate cells [7], fibrocytes [8], and epithelial cells
[9] into myofibroblasts, the drivers of collagen de-
position and tissue contraction. After fulfilling their
initial repair task myofibroblasts undergo apoptosis.
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In pathological conditions, however, activated myofibroblasts
persist and drive the extent of the fibrotic process cre-
ating a surplus of collagenous scar tissue [10]. Current
consensus identifies myofibroblasts through a combin-
ation of three markers, namely, collagen I secretion,
contractile protein a-smooth muscle actin (ax-SMA)
and the cytoskeletal component F-actin [11].

In contrast to hormones, growth factors (GF) like
TGEF-P1 act locally due to their short half-lives, slow dif-
fusion rates and range [12]. Although very little is known
about whether active TGF-P1 levels in tissue are locally
elevated for minutes, hours, or longer. So far, only one
study has addressed this question and demonstrated that
active TGF-P1 levels in healing skin wounds indeed fluc-
tuate at least on a daily basis [13]. This supports the no-
tion that pulsatile regulation pervades most in vivo
physiological systems. Typical examples are hormones
that are released in bursts of 30 to 90 min intervals like
the gonadotropin-releasing hormone [14] or cortisol
[15]. Accordingly, hormone-responsive cells are condi-
tioned to respond to repetitive pulses and their fre-
quency. There is growing evidence that the duration of
GF impact also modulates cell response. Multiple 24 h
pulses of platelet-derived growth factor applied in 7 day
intervals drives osteoblastic differentiation of pre-
osteoblasts while continuous application is inhibitory
[16]; cell cycle commitment achieved with 10 h of con-
tinuous exposure to platelet-derived growth factor can
be replaced by two short pulses (minimum 30 min over
an 8 h interval period) [17]; a 1 min single pulse of nerve
growth factor can trigger long-term neuronal excitability
[18]. Current in vitro models of fibrosis rely on the con-
tinuous exposure of cells to 2 to 20 ng/ml of recombin-
ant TGF-B1 for 3 to 5 days to generate myofibroblasts.
Here, we studied single and double TGEF-f1 pulses
with regard to induction and maintenance of the
myofibroblast phenotype and observed long-lasting ef-
fects that can be explained by a cascade of matrix depos-
ition and GF storage events, which highlights the ECM
as a pericellular memory system.

Results

A 0.5 h TGF-B1 pulse was sufficient to effects changes for
up to 7 days

We present novel evidence that a pulse of TGF-$1, ran-
ging from a mere 0.5 h to 4 h, elevated collagen I secre-
tion rate sampled over a 24 h period and increased o-
SMA expression. Results demonstrate the creation and
maintenance of the myofibroblast phenotype 7 days
post-pulse, with reversion to baseline 14 days post-pulse.
An additional pulse, administered 24 h later potentiated
the maintenance of the myofibroblast phenotype. In
comparison with traditional exposure to 4 days of TGEF-
B1 treatment, we observed that double TGE-B1 pulses
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displayed a profile similar to fibroblasts treated with 4
days of TGF-B1 exposure (Figure 1, Figure 2, Additional
file 1: Figure S1, Additional file 2: Figure S2 and
Additional file 3: Figure S3).

Fibrogenic genes were upregulated 24 h post-TGF-f31
pulse

To better characterise the long-lasting effects observed
with single and double TGF-B1 pulse(s), transcription of
selected fibrogenic genes relevant for the TGF-f1 signal-
ling and collagen regulation pathway was monitored.
mRNA levels of ACTA2 (a-SMA); TGE-P1 signalling mol-
ecule, frizzled-8 (FZD8); reactive oxygen species prod-
uct, NADPH oxidase 4 (NOX4) and regulator of matrix
proteins, transmembrane glycoprotein tetraspanin 2
(TSPAN2) were significantly elevated 24 h after a single
TGE-P1 pulse for up to 7 days. Double pulses doubled the
duration of this effect (Table 1).

Single TGF-f1 pulses triggered sustained autocrine TGF-
B1 production

Focusing on single and double 4 h TGEB1 pulses, cell
layers were washed extensively with Hank’s balanced salt
solution (HBSS) to remove recombinant TGF-B1. Sub-
stantial levels of endogenously produced active TGF-$1
levels were detectable in culture media 24 h post-pulse
and had reverted to baseline at days 7 and 14 (Figure 3).
In contrast, we observed an increased amount of latent
TGE-P1 levels at all assessed time points as revealed
when latent TGF-B1 in the samples were activated using
hydrochloric acid to measure the total amount of TGE-
B1 available.

No apparent evidence for epigenetic modifications in
selected fibrosis-related genes after TGF-B1 pulsing
Considering epigenetic changes as a basis for the long-
lasting effects of TGF-Pl pulses, we studied DNA
methylation events on the ACTA2 and COL1A1 genes
after TGF-P1 pulse(s). We did not find significant DNA
methylation modifications in our model (Table 2).

Myofibroblast generating ECM contained higher amounts
of LTBP-1, collagen | and a higher degree of lysyl oxidase-
mediated crosslinks

We proceeded to assess the ECM components of the
TGF-B1l-pulsed ECM. We observed increased matrix
crosslinks on the M1 and M7 ECM. Also, increased p:a
crosslinking ratio, collagen V, collagen I deposition and
latent transforming growth factor binding protein-1
(LTBP-1) expression on the ECM decellularised 1 day
post-pulse was observed (Figure 4). M7 matrices showed
particularly under TGF-PB1 pulses an apparent normal-
isation of the B:a ratio, however, high molecular weight
bands in the y region and above, and close to the slot
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Figure 1 A TGF-B1 pulse(s) elevated the collagen | secretion rate. (a) Growth-arrested fibroblasts were treated with or without TGF-31
according to the cell culture setup comparing single and double TGF-31 pulses with the traditional 4 days of TGF-31 treatment. Normalised
densitometric SDS-PAGE analysis of the 24 h collagen secretion rate of pulsed fibroblasts for the (b) 0.5 h, (c) 4 h; (d) 2x 0.5 h, (e) 2x4 h TGF-31
pulses, and (f) 4 days of TGF-B1 treatment. *P <0.05 versus respective untreated controls. Data are represented as mean =+ SD, calculated from three
independent studies in triplicate, and expressed as fold changes over respective controls. SD, standard deviation; TGF-31 transforming growth factor-31.

C 4h TGFB1 Pulse

Day 1 Day 7 Day 14
ocCtrl m4h TGFBR1

w

Fold Change Ctrl
- N

o

€ 2 x 4h TGFB1 Pulse

=4

2 %

o

5> .
52

b=

Day 1 Day 7
OCtrl m2 x 4h TGFB1

Day 14

become prominent, indicating the formation of high mo-
lecular weight aggregates of pepsin-resistant collagen
(Figure 4d).

ECM generated under TGF-B1 pulses induced
myofibroblast phenotype while normal ECM
downmodulated it

To investigate the phenotypic influence of ECM-mediated
(produced after TGF-f1 pulses) myofibroblast induction,

fibroblasts were pulsed with or without TGF-B1 for 4 h
and 2 x 4 h. Fibroblasts were then removed by detergent
treatment and resulting decellularised ECM (Additional
file 4: Figure S4) was reseeded with previously untreated
fibroblasts. We observed that in particular, doubly TGEF-
Bl-pulsed ECM was able to induce a myofibroblastic
phenotype (Figure 5). Furthermore, the myofibroblast-
inducing properties were strongest in ECM decellularised
1 day post-pulse and were slightly diminished (only a-
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Figure 2 A TGF-B1 pulse(s) elevated a-SMA expression. (a) Growth-arrested fibroblasts were treated with or without TGF-31 according to the
cell culture setup comparing single and double TGF-31 pulses with the traditional 4 days of TGF-31 treatment. Densitometric analysis of a-SMA
immunoblots normalised to 3-actin bands for the (b) 0.5 h, (c) 4 h; (d) 2x 0.5 h, (e) 2x4 h, and (f) 4 days of TGF-31 treatment. *P <0.05 versus
respective untreated controls. Data are represented as mean + SD, calculated from three independent studies in triplicate, and expressed as fold
changes over respective controls. a-SMA, a-smooth muscle actin; SD, standard deviation; TGF-31 transforming growth factor-31.
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SMA expression increased) in ECM 7 days after
decellularisation. Vice versa, we seeded myofibroblasts
onto ECM from non-TGF-B1-treated fibroblasts. To in-
crease the yield of ECM deposition as according to [19],
matrix formation was performed in the presence of
macromolecular crowding. To generate myofibroblasts,
we employed 4 days of TGF-B1 treatment (the current
‘gold standard’ in the field). As we noted a loss of pheno-
type using conventional trypsin passaging (Additional file

5: Figure S5), we replaced this method by using dispase,
which preserved the phenotype (Additional file 6: Figure
S6). We observed that myofibroblasts cultured on fibro-
blast ECM normalised their collagen I production (Figure 6
and Additional file 7: Figure S7).

Discussion
A myriad of short-lived signals permeate living tissues in
health and disease. In fibrosis, TGF-B-mediated processes
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Table 1 Selected fibrosis-related genes were upregulated post-TGF-B1 pulse

Model Single pulse - 0.5 h, 4 h Double pulse - 2x 0.5 h, 2x4 h
Gene/day 1 7 14 1 7 14
a-SMA 20+26* 13+04 08+02 20+29* 56+1.3* 12+02
FZD8 90 + 25* 2+08* 1.1£02 100 + 30* 25+ 11 23+£15
NOX4 50+ 25* 14+£04 09+0.1 74 £29* 93 +£25% 1.6+04
TSPAN2 500 £ 100* 3+15% 15+03 240 £ 70* 20+7.8* 29+£1.0%

Fibroblasts were pulsed with or without TGF-B1 at the indicated time points. The expression of selected genes was quantified by RT-PCR analysis. Data are
represented as averages of fold changes of TGF-B1 pulse-induced gene expression + SD, quantified from triplicate studies in duplicate, and expressed as fold
changes over respective controls (rounded to 1 dp). *P <0.05 versus respective untreated controls. a-SMA a-smooth muscle actin, FZD8 frizzled family receptor 8,

NOX4 NADPH oxidase 4, TSPAN2 transmembrane glycoprotein tetraspanin 2.

play an important role in the polarisation of mesenchymal
cells into myofibroblasts. In this study, we considered the
effects of pulsed TGF-B1 on WI-38 cells and made two
significant observations. First, that a short TGF-B1 pulse
has a surprisingly long-lasting effect as evidenced by the
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Figure 3 Exogenous TGF-B1 pulses induced autocrine TGF-$1
production. Active TGF-31 in single and double pulses was
elevated in culture medium only 24 h after (@) 4 h and (b) 2x 4 h
TGF-B1 pulse(s). Acidic activation of latent TGF-31 generated
increased TGF-B31 levels at all time points. *P <0.05 (solid line) versus
respective untreated controls for active TGF-31 comparison. *P <0.05
(dotted lines) versus respective untreated controls for latent TGF-31
comparison. Data are represented as mean + SD, calculated from
four independent studies in triplicate, and expressed as fold changes
over respective controls. SD, standard deviation; TGF-31 transforming
growth factor-1.

generation of a bona fide myofibroblast phenotype. This
suggests some phenotypic signal retention mechanism or
information storage in or around the cell. Second, this ef-
fect is transient; it wears off. This suggests dampening of
a phenotype-maintaining signal and erasure of stored
information. To start with, pulsatile impact of GF on tar-
get cells is not well studied, but it is conceivable that it
offers advantages over continuous exposure. It avoids
downregulation of receptors on target cells as a possible
response to signal bombardment [16]. While this keeps
cells continuously responsive, it also reduces inertia in a
feedback system. In contrast to hormones, GF work locally
in a diffusion perimeter around releasing cells and can be
stored and moved around in the ECM [20]. Release of
TGEF-P1 can be due to direct secretion (for example by in-
flammatory) cells or by proteolytic or mechanical release
from matrix storage points, but it is not known whether
these modes generate a continuous or a pulsed/intermit-
tent scenario. Modelling the latter, we found a single TGE-
B1 pulse of 4 h or even 30 min to be sufficient to induce
and maintain a myofibroblast phenotype for up to 1 week;
an additional pulse 1 day later doubled the duration of the
effect. This was similar to the duration of effects obtained
with continuous 4 days of TGF-B1 treatment, a classical
in vitro treatment scheme in experimental biology.
Twenty-four hours after a single TGF-B1 pulse, fibrosis-
related genes were maximally upregulated, while a-SMA
and collagen I secretion levels took a further 6 days to
peak. We therefore propose four levels of signal propaga-
tion and message maintenance to explain the transience of
the TGF-B1-induced myofibroblast phenotype. First, com-
putational modelling as well as experimental work has
shown that TGF-B1 pulses as short as 30 s can induce a
SMAD cascade, with elevated phosphorylation levels last-
ing for 4 h [21]. However, long-term observations were
not made in this publication and classically, the SMAD ac-
tivation cascade wears off in a matter of 3 to 4 h [22].
Therefore, SMAD phosphorylation would not plausibly
serve as the maintainer of a myofibroblast phenotype for
the observed time period. However, we noticed with inter-
est that a single pulse of exogenous TGF-p1 leads to sub-
sequent release of endogenous active TGF-f1 and,
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Table 2 DNA gene methylation levels remain unchanged after TGF-31 pulses

Amplicon CpG site 4 h TGF-B1 pulse 2x4 h TGF-B1 pulses
probed Day 1 Day 7 Day 14 Day 1 Day 7 Day 14
ACTA2 (1) 1 05+0.5 085+0.18 0434033 0.86 +0.54 1.0+041 1.75+063
12 1.0+047 133 £0.63 06+0.39 15+1.06 0.67£0.33 0.83£0.23
14 0.97+0.18 1.26+£0.19 33+226 1.58+1.12 1.65+0.36 0.7 041
16 0.81+043 0.78+050 093+054 0.98+0.29 1.78£0.53 1.0+036
17 1.07+032 1.08 £ 0.64 1.33£0.63 12+096 367+£292 05+0.18
20.21 1.0+052 1.0£0.1 0.71+0.51 1.0+051 1.0+081 1.0+067
22 071+0.25 144093 1.0+0.71 043+0.1 05+033 1.0+04
23 0.71+0.83 20+£1.54 20£141 125+ 1.06 17615 20£1.18
24 0.99+063 12+066 1.0+£029 071+£05 0.67£031 20£15
25 1.0+ 067 1.5+1.23 1.0+ 051 1.0+03 1.0+ 067 1.0+£067
ACTA2 (2) 1 40+265 233£1.19 1.0+067 0.83+0.24 1.75+06 067 £0.31
2 057+0.11 167 £0.77 064 +£0.15 1.14+1.06 09+0.78 0.56+£0.18
4 131+£036 0.94+0.08 0571027 0.97 £ 041 1.15£0.17 0.84+0.25
5 1.0£067 20£141 06+£0.32 033+047 08+0.23 1.0+089
10 099+ -67 0.83+0.23 0.75+£0.35 1.75+0.63 1.0+047 1.0+04
11 20+£1.82 25071 033+049 05+039 1.0+0.71 167 +£092
1213 1.75+0.36 04£0.12 0.83 £046 1.0+0.89 05+0.18 1.0+029
14.15.16 069+0.13 09+0.14 081+0.17 0.73+£045 0.78+038 0.73+£035
COL1A1 (1) 3 1.0+040 15405 1.33+£063 1.54+043 1.0+045 140+0.39
8.19 0.67 £0.56 0.60£0.33 0.75+£0.53 092+0.24 091+0.28 0.73£0.12
COL1A1 (2) 2 1.0+081 1.33+03 1.0+ 047 1.67+£0.7 1.0+£071 083 +045
7 14+049 05+033 1.75+035 1.0+0.71 15+035 1.62 +£0.60
89 092+0.59 20£0.58 0.36£041 133+098 0.57+0.38 14 £0.94
11.12 0.67+032 20£18 1.0+067 0.75+035 0.75+045 0.7£051

ACTA2 and COL1A1 were not regulated by DNA methylation in response to TGF-B1 pulse(s). Changes in methylation levels >10% are considered significant.
ACTA2 and COL1A1 genes expressed low methylation levels and no overt changes after TGF-B1 pulse(s). ACTAT actin alpha 1, COL1AT collagen, type |, alpha 1,

TGF-B1 transforming growth factor-p1.

therefore, to an autocrine stimulation that is dampened
during the first 24 h. Further work needs to be done to de-
termine the pulsatile nature of this autocrine TGF-f1 re-
lease and resultant SMAD activation period. We would
currently speculate that the first pulse does not
downregulate TGE-B1 receptors, but the following auto-
crine self-stimulation might, thus leading to the first
dampening of signal.

At the next level of intracellular changes that could
transiently stabilize the myofibroblast phenotype after
a single TGF-B1 pulse, we considered epigenetic modifi-
cations affecting DNA methylation. We could not estab-
lish significant CpG methylation changes for selected
regions of selected TGF-P1l-responsive genes (ACTA2,
COL1A1l). Also, no changes in histone H3 methylation
were seen in the lysyl hydroxylase PLOD2 gene [Ruud
Bank, University of Eindhoven, personal communication,
2012]. This does not rule out methylation changes in
other genes and regions under the influence of TGF-p1.

For example, the CpG island promoter of RASALI, a
member of the RAS-GAP family was found to be con-
sistently hypermethylated in fibrotic renal fibroblasts
correlating with suppressed expression levels. However,
this region was never found to be methylated in acute
kidney injury, which is associated with transient fibro-
blast activation and transient suppression of RASALI1
transcription. It is assumed that hypermethylation serves
as a mechanism to imprint this pathway, preventing the
fibrotic fibroblasts from returning to their quiescent
state [23]. Such an imprint pathway might be active in
systemic scleroderma fibroblasts [24,25] of which a sub-
set shows a constitutive activation of the (TGF)p/Alkl/
SMADI1 signalling pathway. As in our model, the ob-
served transitory character of fibroblast activation after a
TGEF-B1 pulse did not suggest that such an imprint
mechanism is in operation. We considered as the next
option, microenvironmental changes that could posi-
tively reinforce a myofibroblastic phenotype based on
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(See figure on previous page.)

Figure 4 TGF-f1 pulses increased matrix crosslinks, LTBP-1 and collagen | deposition. Fibroblasts were pulsed with or without TGF-31 for
4 hor2x4 h. ECM was decellularised days 1 and 7 post-pulse. Normalised densitometric SDS-PAGE ratios of the (a) crosslinks:a; (b) 3:a bands of
the pepsin-digested ECM; (c) collagen V; and (d) corresponding silver-stained gel. The formation of high molecular weight aggregates of pepsin-
resistant collagen is indicated by §; (e) LTBP-1 (red); (f) collagen I (red); (g) fibronectin (green) and nuclei stained with DAPI (blue) of the TGF-31-
pulsed ECM. Scale bars =200 uM. *P <0.05 versus respective untreated controls. Data are represented as mean + SD, calculated from three
independent studies in triplicate, and expressed as fold changes over respective controls. ECM, extracellular matrix; LTBP-1, latent transforming
growth factor binding protein-1; SD, standard deviation; TGF-31 transforming growth factor-g1.

the notion of dynamic cell matrix reciprocity [26,27].
This term entails cellular influence on the matrix via
matrix synthesis, degradation and remodelling [28,29],
and in turn an ECM influence on cell decisions. We ob-
served in matrices laid down by TGEF-B-pulsed fibro-
blasts a markedly increased deposition of collagen I,
collagen V and LTBP-1. LTBP-1 holds latent TGF-f1 in
storage and is crosslinked to matrix proteins such as fi-
bronectin [30], fibrillin-1 [31] and collagen I [32]. This
suggests that latent TGF-P1 is increasingly stored in the
nascent and later maturing matrix from which the active
form can be released to support the phenotype. This ob-
servation would suffice to explain how a single pulse can
maintain a myofibroblast signal after the initial autocrine
TGEF-B1 secretion has subsided, roughly after 24 h. A
second pulse 24 h later would prolong the total TGF-$1
exposure time to at least 48 h (exogen plus endogen
TGEF-B1) and in this period more matrix can be depos-
ited. Its major components, collagen I [33] and fibro-
nectin FN ED-A domain [34] were already shown to
induce the myofibroblast phenotype. In addition,
myofibroblast contraction activates latent endogenous
TGE-B1 stores on the ECM [35], thereby plausibly
contributing to myofibroblast maintenance. We also
observed increased collagen V deposition in TGF-p1
-pulsed matrices. Increased deposition of collagen V
and the subsequent thickening of lamina reticularis are
implicated in subepithelial asthma fibrosis [36]. Colla-
gen V co-assembles with collagen I to form hetero-
typic fibrils [37], its increased deposition mirrors
that of collagen I. Collagen V is known to be highly
expressed during tissue development, wound repair,
and fibrogenesis. The collagen V propeptide PVCP-
1230 was recently suggested as a biomarker for tissue
remodelling in liver fibrosis [38].

Support stiffness is also increasingly discussed as a
modulator of cellular phenotype. In this regard, the
mechanical properties of ECM under TGEF-f1 pulses
could be altered through the activation of matrix
crosslinking enzymes such as transglutaminase [39]
and lysyl oxidase (LOX) [40]. We found biochemical
evidence for an increased LOX-mediated collagen I
crosslinking in the M1 and M7 matrices. A direct rela-
tionship between LOX crosslinking and matrix stiffness
has recently been demonstrated for the pathological

microenvironment of colorectal cancer in liver tissue
[41]. Indeed, a stiff ECM has been also described to
drive myofibroblast formation [42-45]. A new twist has
been added recently to this apparent straightforward re-
lationship with the discovery that an admixture of colla-
gen V softens collagen I lattices [46]. More work needs
to be done to determine whether an increased collagen
V deposition might represent compensation mechanisms
to control matrix stiffness.

We employed decellularised ECM that had been
generated under TGF-B1 pulses and showed that it can
induce and transiently maintain a myofibroblast pheno-
type in fibroblasts that have not been exposed to this
GF. Maximal inductive capacity was present in M1
matrices (24 h after pulse). Considering the huge matrix
losses during decellularisation (70 to 90%) the full effi-
cacy of entirely intact matrices can be easily appreciated.
The fading of the myofibroblast-inducing effect of M7
matrices coincided with a high degree of crosslinking
and collagen V deposition. This suggests erasure of bio-
chemical inductive signals due to dynamic turnover as
effected by proteolytic remodelling of ECM. In a cross-
over experiment, we showed that matrix laid down by
control (non-treated cells) normalised the collagen out-
put of myofibroblasts. These observations tie in with
previous findings that cultivation on matrigel [47] and
cryopreserved amniotic membrane stromal surfaces [33]
reversed the a-SMA expressing myofibroblast pheno-
type. a-SMA, however, was not normalised by the nor-
mal fibroblast matrices in our hands. More work needs
to be done to study the role of proteolytic remodelling
in erasing fibrogenic ECM signals, but it is tempting to
speculate that the induction of matrix metalloproteinase
activity in fibrotic tissue by hepatocyte growth factor
reviewed in reference [48] in physiology and with thera-
peutic intent, might serve to wipe the slate clean and to
interrupt a feed-forward loop that otherwise would lead
to a chronic fibrotic state.

Conclusions

Here, we have first demonstrated that short TGF-B1
pulse(s) exerts a long-lasting effect on normal fibroblasts
with regard to attaining a myofibroblastic phenotype.
This effect is based on cell-matrix reciprocity: the micro-
environment appears to retain a memory of TGF-$1
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Figure 5 TGF-B1-pulsed ECM influenced the myofibroblast phenotype. Untreated fibroblasts were seeded onto decellularised TGF-31-pulsed
ECM. Classic myofibroblast markers were assessed 7 days post-culture. (a) Normalised densitometric SDS-PAGE analysis of the 24 h collagen
secretion rate; (b) densitometric analysis of a-SMA normalised to -actin expression; representative (c-f) corresponding SDS-PAGE gels and
immunoblots of M1 and M7 ECM; (g) immunofluorescence images showing presence and distribution of a-SMA (red); F-actin (phalloidin, green)
and nuclei stained with DAPI (blue). TCP control, matrix control and fibroblasts reseeded onto 4 h and 2 x4 h TGF-B1-pulsed ECM images are
modified to highlight a-SMA expression. Scale bars =200 uM. *P <0.05 versus respective untreated controls. Data are represented as mean =+ SD,
calculated from three independent studies in triplicate, and expressed as fold changes over respective TCP controls. TGF-31 ECM: '+ denotes a

4 hand ++' 2 x4 h TGF-B1 pulse(s) on decellularised ECM. TGF-31 cells: ‘+" denotes a 24 h TGF-B1 pulse on reseeded fibroblasts. a-SMA, a-smooth
muscle actin; ECM, extracellular matrix; SD, standard deviation; TCP, tissue culture plastic; TGF-31 transforming growth factor-31.

insults in the form of biochemical cues, including a
higher content of endogenous latent TGF-1 that is pro-
duced as a response to a short exogenous active TGF-$1
pulse. On first sight, this would constitute a positive
feed-back loop that should lead to perpetuation of the
myofibroblast phenotype after a limited TGF-p1 impact.
Surprisingly, this is not the case, a dampening effect en-
sues that we have to attribute to spontaneous remodel-
ling of the matrix by the cells and the subsequent
removal of myofibroblastic cues over time. Therefore,
our model appears to emulate a typical tissue injury re-
sponse in its transience. As limited as this in vitro sys-
tem is, it illustrates, that it would take one 30 min TGEF-
B1 pulse every week only to maintain the myofibroblast
phenotype. This has a bearing for the development of
antifibrotic drugs and points to future research avenues
to study fibrotic processes.

Methods

Cell culture and treatment of lung fibroblast line

Human fetal lung fibroblasts WI-38 (CCL-75; ATCC,
Manassas, VA, USA) were cultured in 10% fetal bovine
serum (FBS) Dulbecco’s modified Eagle’s medium
(DMEM) (Gibco Invitrogen, Grand Island, NY, USA) in
5% CO2 at 37°C. The cells were cultured at low passage
(passage number 6 to 8). Fibroblasts were seeded at 5 x
10*/well in 24-well plates or 1x10°/well in 12-well
plates in 10% FBS DMEM. Cells were seeded at 70% and
50% of the above mentioned density for 7 and 14 days
respectively. After 24 h to allow for cell attachment in
10% FBS, the fibroblasts were growth-arrested by
DMEM media for 24 h. Subsequently, they were treated
with or without 5 ng/ml of TGF-f1 pulses (R&D Sys-
tems, Minneapolis, MN, USA) in serum-free DMEM
and 30 pg/ml L-ascorbic acid phosphate magnesium salt
n-hydrate (ACA; Wako, Osaka, Japan), at the pulsed
time points of 0.5 h and 4 h. Thereafter, TGF-P1 treat-
ment was removed and cultures washed twice with
HBSS. Cultures were maintained in 0.5% FBS DMEM
and 30 pg/ml ACA, with medium changes every 4 days.
Serum-free DMEM was used to assess the collagen con-
tent in culture media of the indicated follow-up day,
where the culture media was changed and harvested
after 24 h to analyse the collagen content.

Biochemical analysis of collagen production

Harvested serum-free DMEM in the last 24 h of
the culture period was harvested and digested with
25 ug/ml porcine gastrin mucosa pepsin (Roche,
Basel, Switzerland). Collagen I deposition on the
ECM was digested in situ with 250 ug/ml porcine
gastric muscosa pepsin. Extracts were digested in 0.1
N HCI for 2 h and neutralized with 1 N NaOH. Ex-
tracts were then visualized under non-reducing con-
ditions using 5% resolving/3% stacking SDS-PAGE
gel electrophoresis as outlined in [49]. Protein bands
were stained with the SilverQuest™ kit according to
manufacturer’s protocol (Invitrogen, Carlsbad, CA, USA).
Densitometric analysis of wet gels was performed on
the collagen al(I)-bands with the GS-800™ calibrated
densitometer and analyzed by the Quantity One
v4.5.2 image analysis software (Bio-Rad, Hercules,
CA, USA).

Adherent cytometry

For the normalisation of collagen I secretion rate, fibro-
blasts were stained with 4’,6-diamidino-2-phenylindole
(DAPI); Molecular Probes, Eugene, OR, USA) after abso-
lute methanol fixation at days 1, 7 and 14. Nine image
sites covering 71% of the total well area were acquired at
2x magnification using a Nikon TE600 fluorescence
microscope (Nikon Corp., Tokyo, Japan) an automated
Ludl stage (BioPrecision 2; Ludl Electronic Products
Ltd., Hawthorne, NY, USA) and analysed using the
Metamorph™ Imaging System software (Molecular De-
vices, Downingtown, PA, USA) as described in [50]. A
nucleus was defined as a fluorescent region with a length
of 10 to 20 pM and pixel intensity value of 10 units
above background.

Immunoblotting

Western blots were performed according to [51]. Briefly,
proteins were extracted from the cell layer with loading
buffer comprising of 50 mM Tris-HCI pH 6.8, 2% SDS,
0.1% bromophenol blue and 10% glycerol and protease
inhibitor cocktail (Roche, Basel, Switzerland). Extracts
were separated under non-reducing conditions on 12%
resolving/3% stacking SDS-PAGE gel electrophoresis
with 5 mM DTT. Proteins were electroblotted onto a
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Figure 6 Fibroblast ECM downmodulated collagen | production in myofibroblasts. Four-day TGF-31-treated myofibroblasts were dispase
passaged and reseeded onto fibroblast ECM. Classic myofibroblast markers were assessed 7 days post-culture. (@) Immunofluorescence images
showing the presence and distribution of a-SMA (red); F-actin (phalloidin, green) and nuclei stained with DAPI (blue). Scale bars =200 puM. (b)
Normalised densitometric SDS-PAGE analysis of the 24 h collagen secretion rate; (c) corresponding silver-stained gel; (d) densitometric analysis of
a-SMA immunoblots normalised to B-actin bands; and (e) corresponding immunoblots. *P <0.05 versus respective to TCP controls. *P <0.05
versus respective to myofibroblasts passaged and reseeded on TCP. Data are represented as mean + SD, calculated from duplicate studies in
triplicate, and expressed as fold changes over respective controls. a-SMA, a-smooth muscle actin; ECM, extracellular matrix; SD, standard deviation;
TCP, tissue culture plastic; TGF-31 transforming growth factor-31.

nitrocellulose membrane. Immunodetection was carried
out in Tris-buffered saline Tween-20 at pH7.6 (50 mM
Tris-base, 150 mM NaCl and 0.05% Tween 20). Mem-
brane was blocked with 5% non-fat milk for 1 h. Primary
antibodies against a-SMA (1:500) and p-actin (1:1000)
were from mouse (Sigma-Aldrich, St. Louis, MO, USA).
Primary antibody incubation was carried out for 1.5 h.

Membrane was incubated for 1 h with secondary anti-
body goat anti-mouse HRP (1:3000, Dako, Glostrup,
Denmark). Membrane was washed with buffer three
times after antibody incubation. Blots were developed
with the Pierce Western blotting detection system
(Thermo Scientific Pierce, Rockford, IL, USA) for 3 min.
Chemiluminescence signal was captured with the
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VersaDoc Imaging System model 5000 and analysed
with the Quantity One v4.5.2 image analysis software
(Bio-Rad, Hercules, CA, USA).

Immunocytochemistry

Cell layers were washed with HBSS and fixed with
methanol-free 3.7% formaldehyde (Thermo Scientific
Pierce, Rockford, IL, USA) at room temperature (RT) for
10 min. The cell membrane was permeabilised with 0.1%
Triton X-100 for 3 min. After washes with PBS, non-
specific sites were blocked with 3% BSA for 1 h followed
by incubation with primary antibody, o-SMA (1:100;
Dako, Glostrup, Denmark), collagen I (1:1000; Sigma-
Aldrich, St. Louis, MO, USA), rabbit anti-fibronectin
(1:100; Dako, Glostrup, Denmark), or rabbit anti-LTBP-1
(1:200, a gift from Dr. Carl-Henrik Heldin, Helsinki,
Finland) for 1.5 h. Secondary antibodies were goat anti-
mouse AlexaFluor594, chicken anti-rabbit AF488, goat
anti-rabbit AlexaFluor594 (1:400; Molecular Probes,
Eugene, OR, USA) and AlexaFluor488 phalloidin (1:100;
Molecular Probes, Eugene, OR, USA). Cell nuclei were
counterstained with DAPI. Images were acquired with an
Olympus LX71 epifluorescence microscope (Olympus,
Tokyo, Japan). All digital images were background-
subtracted based on conjugate control.

Quantitative reverse transcriptase real-time polymerase
chain reaction (RT-PCR)

Total RNA was isolated from cell extracts using Trizol™ re-
agent (Invitrogen, Carlsbad, CA, USA) and the RNeasy
mini kit (Qiagen, Valencia, CA, USA). RNA concentration
was determined using NanoDrop (NanoDrop Technolo-
gies, Wilmington, DE, USA). A total of 100 ng of total
RNA was reverse-transcribed using the SuperScript III re-
verse transcriptase (Invitrogen, Carlsbad, CA, USA) with
oligo(dT) primers according to the manufacturer’s protocol.
Real-time polymerase chain reaction was carried out using
2 pL of ¢cDNA, 10 pL of Maxima™ SYBR Green/ROX qPCR
Master Mix (Thermo Fisher Scientific, Waltham, MA,
USA) and 0.3 pM of primers in a reaction volume of 20 pL.
All reactions were performed on the real-time Mx3000P
(Stratagene, La Jolla, CA, USA). The thermal cycling pro-
gram for all polymerase chain reactions was: 95°C for 15
min, followed by 40 cycles of amplifications, consisting of
a denaturation step at 94°C for 15 s, an annealing step at
55°C for 30 s, and an extension step at 72°C for 30 s.
Fibrogenic genes analysed were ACTA2, FZD8, NOX4 and
TSPAN2. Primers were designed using the Oligo6.0 pro-
gram (National Biosciences Inc., Plymouth, MN, USA) and
are listed in Table 3. The level of expression of the target
genes, normalised to glyceraldehyde 3-phosphate dehydro-
genase (GAPDH) was calculated using the AACT formula
and expressed as fold-change controls.
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Table 3 Primer sequences of selected fibrogenic genes

Gene Primer sequence

GAPDH Forward primer: 5'- GTCCACTGGCGTCTTCACCA -3'
Reverse primer: 5'- GTGGCAGTGATGGCATGGAC -3'

ACTA2 Forward primer: 5'- TTCAATGTCCCAGCCATGTA-3'
Reverse primer: 5'- GAAGGAATAGCCACGCTCAG-3'

FZD8 Forward primer: 5'- AGACAGGCCAGATCGCTAACT-3'
Reverse primer: 5'- AAGCGCTCCATGTCGATAAG-3'

NOX4 Forward primer: 5'- GGCCAGAGTATCACTACCTCC-3'
Reverse primer: 5'- GTTCGGCACATGGGTAAA-3'

TSPAN2 Forward primer: 5'- TTCATGTGTGATCTGCGTGTT-3"

Reverse primer: 5'- TGGGAGCGAAATAGGTTGT-3'

Primers were designed using the Oligo6.0 bioinformatics program, and
analysed using quantitative real-time polymerase chain reaction (RT-PCR).
ACTA2 actin alpha 2, FZD8 frizzled family receptor 8, GAPDH glyceraldehyde
3-phosphate dehydrogenase, NOX4 NADPH oxidase 4, TSPAN2 transmembrane
glycoprotein tetraspanin 2.

TGF-B1 Quantikine enzyme-linked immunosobent assay
(ELISA)

The expression of TGF-1 was determined with commer-
cially available ELISA kit (Human TGF-B1 Quantikine
ELISA Kit; R&D Systems, Minneapolis, MN, USA). At the
indicated endpoint, culture media was changed and
harvested after 24 h to analyse TGF-B1 content super-
natant by sandwich ELISA according to specialized proce-
dures described in the manufacturer’s protocol.

MassARRAY: DNA extraction, bisulfite-conversion - PCR
and Spot-fire

Genomic DNA was isolated from cell extracts using the
DNeasy mini kit (Qiagen, Valencia, CA, USA), and con-
centration determined using NanoDrop (NanoDrop Tech-
nologies, Wilmington, DE, USA). DNA methylation was
measured with the Sequenom MassARRAY Compact
System (Sequenom, San Diego, CA, USA) [52]. Briefly,
gene-specific amplification of bisulfite-treated DNA was
followed by in vitro transcription and analysis by
matrix-assisted laser desorption ionization time-of-flight
(MALDI-TOF) mass spectrometry. Sequenom assay de-
sign and methods were according to procedures outlined
in the manufacturer’s protocol. 1 pg DNA was bisulfite-
converted using EZ DNA Methylation kit (Zymo Re-
search, Irvine, CA, USA). PCR primers specific (Table 4)
for bisulfite-converted DNA were designed using the
UCSC Genome Browser [53] and Methprimer [54]. Each
of the reverse primer’s contained a T7-promoter tag for
in vitro transcription (5'-cagtaatacgactcactatagggagaaggct-
3’), and the forward primer was tagged with a 10mer to
balance Tm (5'-aggaagagag-3'). Bisulfite-treated DNA was
PCR-amplified using HotStar Taq Polymerase (Qiagen,
Valencia, CA, USA) in 5 pL reactions and treated with
shrimp alkaline phosphatase (Sequenom, San Diego, CA,
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Table 4 Amplicons, genomic coordinates and primer sequences of the extended promoter regions measured

Amplicon Genomic coordinates Primer sequence CpG

ACTA2 (1) chr10:90,750,187-90,750,540 Fwd 5'-TAGTTAGGGTTGGTTTTAGGGTGT-3' 19
Rev 5'-CCTAAAATAAACATACCAACCACTACA-3'

ACTA2 (2) chr10:90,750,828-90,751,169 Fwd 5'-TTTGTTTTGAAGGTTGTAGGTTTTTT-3' 26
Rev 5'-ACTATTAAAACCTTCCCTCAAACCC-3'

COL1A1 (1) chr17:48,278,603-48,278,899 Fwd 5'-AGTTTATATGTTTAGGGTTTAGATATGTT-3' 19
Rev 5'-CCAAAATAAACTCCCTCCTATCTCA-3'

COL1A1 (2) chr17:48,278,860-48,279,232 Fwd 5-AGTATTTTTGGTTTAGGTTGGG-3' 17
Rev 5'-CACAAAACTAAACATATCTAAACCCT-3'

PCR-specific primers were designed using the UCSC Genome Browser and CpG sites predicted using the Methprimer algorithm. ACTA2 actin alpha 2, COL1A1

collagen, type |, alpha 1.

USA) for 20 min at 37°C and then at 85°C for 5 min. In
vitro transcription/uracil-cleavage reaction was carried out
in 7 pL reactions using Sequenom T-cleavage reagent mix.
Transcription cleavage products were desalted with 6 mg
of CLEAN-Resin and 20 nL spotted on a 384-pad
SpectroCHIP (Sequenom, San Diego, CA, USA) using a
MassARRAY nanodispenser (Samsung, Seoul, South
Korea). Mass spectra were acquired using a MassARRAY
MALDI-TOF MS (Bruker-Sequenom, San Diego, CA,
USA) and peak detection, signal-to-noise calculations and
quantitative CpG-site methylation performed using pro-
prietary EpiTyper software v1.0 (Sequenom, San Diego,
CA, USA). Samples that failed to give reliable PCR prod-
uct or produced spectra with low confidence levels (<2.9
in EpiTyper) were excluded from analysis. For fragments
containing a single CpG site, DNA methylation was calcu-
lated by the ratio of methylated to unmethylated frag-
ments. Lower boundary limitations imposed by Sequenom
analysis treat cleavage products containing multiple CpG
sites as single units and methylation values reported were
weighted averages across the unit (referred to as a CpG
group). DNA quality and no-template controls, 0% and
100% methylated DNA were included in all assays.

Generation and decellularisation of TGF-B1-pulsed and
untreated fibroblast ECM

To generate TGF-fl-pulsed ECM, growth-arrested fi-
broblasts were pulsed with or without TGF-f1 and
maintained for either 1 day post-pulse (early matrix; de-
noted as M1) and 7 days post-pulse (late matrix, denoted
as M7); and to generate fibroblast ECM, growth-arrested
untreated fibroblasts were supplemented with 0.5% FBS
DMEM and crowder cocktail made up of 37.5 mg/ml
Ficoll (Fc) 70 and 25 mg/ml Ficoll 400. At the indicated
analysis time point, untreated fibroblast and TGF-p1-
pulsed monolayers were washed twice with HBSS then
treated with 0.5% DOC (Prodotti Chimici E Alimentari,
S.P.A 2003030085), supplemented with 0.5x protease in-
hibitor cocktail in water for 15 min on ice four times,
followed by 0.5% DOC in phosphate-buffered saline

(PBS) on ice two times. ECM were washed with PBS
thrice, and then treated with 0.5 mg/ml DNAse (US Bio-
logical, Swampscott, MA, USA) at 37°C for 1 h. To re-
move residual detergent and DNAse activity, ECM was
washed with PBS three times before fibroblasts or
myofibroblasts were seeded onto the ECM. ECM were
analysed by fixing with absolute methanol for 10 min,
air drying for the next 30 min, followed by immunocyto-
chemistry. At the indicated endpoint, the 24 h collagen I
content and a-SMA expression was assessed.

Statistical analysis

Statistical analysis was performed using GraphPad soft-
ware (GraphPad Software Inc., San Diego, CA, USA).
The statistical significance between groups was deter-
mined using the Student’s ¢-test, two-tailed distribution
with unequal variance. Probability values of P <0.05
(95% confidence interval) in comparison with controls
were accepted as the level of statistical significance.
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All experimental work in this publication involves com-
mercially available human cell lines only was conducted
after expedited review with the approval of the Institu-
tional Review Board of the National University of
Singapore (IRB reference code 09-449E).

Additional files

Additional file 1: Figure S1. SDS-PAGE gels comparing short TGF-31
pulse(s) and 4 days of continuous TGF-B1 treatment. (a) Growth-arrested
fibroblasts were treated with or without TGF-31 according to the cell
culture setup comparing single and double TGF-31 pulses with the
traditional 4 days of TGF-B1 treatment. Corresponding silver-stained SDS-
PAGE gels for the (b) 0.5 h, (c) 4 h; (d) 2x 0.5 h, () 2x 4 h; and (f) 4 days
of TGF-B1 treatments from which densitometric analysis of the 24 h
collagen secretion rate was derived. TGF-31 transforming growth
factor-B1.

Additional file 2: Figure S2. Immunoblots comparing short TGF-31
pulse(s) and 4 days of continuous TGF-B1 treatment. (a) Growth-arrested
fibroblasts were treated with or without TGF-31 according to the cell

culture setup comparing single and double TGF-31 pulses with the
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traditional 4 days of TGF-B1 treatment. Corresponding a-SMA
immunoblots for the (b) 0.5 h, (c) 4 h; (d) 2x 0.5 h, (e) 2x4 h; and (f) 4
days of TGF-B1 treatments from which densitometric analysis of a-SMA
normalised to 3-actin bands was derived. a-SMA, a-smooth muscle actin;
TGF-B1 transforming growth factor-31.

Additional file 3: Figure S3. Immunofluorescence images comparing
short TGF-31 pulse(s) and 4 days of continuous TGF-B1 treatment.
Immunofluorescence images showing presence and distribution a-SMA
(red); F-Actin (phalloidin, green) and nuclei stained with DAPI (blue) from
(@) 4 h; (b) 2x4 h TGF-B1 pulsed; and (c) 4 days of TGF-B1-treated cell
layers. Scale bars =200 uM. *P < 0.05 versus respective untreated controls.
a-SMA, a-smooth muscle actin; TGF-B1 transforming growth factor-31.

Additional file 4: Figure S4. TGF-31-pulsed decellularised ECM was
free from cellular and matrix residues. The absence of actin and DNA
residues was observed in lysed ECM. Representative immunoblots of (a) 4
h; and (b) 2 x4 h TGF-B1-pulsed ECM. Representative ICC pictures of (e)
early M1; and (f) late M7 ECM showing the presence and distribution of
cytoskeletal element F-actin (phalloidin, green); and nuclei stained with
DAPI (blue). 'L" denotes decellularised ECM and ‘UL’ the unlysed ECM
(positive matrix control). ECM, extracellular matrix; TGF-31 transforming
growth factor-31.

Additional file 5: Figure S5. Trypsin-EDTA attenuated the
myofibroblast phenotype. (a) Cell culture setup of TGF-B1-treated
myofibroblasts and subsequent sub-culture. Fibroblasts were treated with
and without TGF-31 for 4 days before passaging using trypsin.
Myofibroblasts were replated onto TCP. (b) Normalised densitometric
SDS-PAGE analysis of the 24 h collagen secretion rate by induced
fibroblasts; (c) corresponding silver-stained gel; (d) densitometric analysis
of a-SMA immunoblots normalised to 3-actin bands; (e) corresponding
immunoblot; and (f) immunofluorescence images showing presence and
distribution a-SMA (red); F-Actin (phalloidin, green) and nuclei stained
with DAPI (blue) from passaged myofibroblasts. Scale bars =200 uM. *P
<0.05 versus respective untreated controls. Data are represented as
mean =+ SD, calculated from three independent studies in triplicate, and
expressed as fold changes over respective controls. a-SMA, a-smooth
muscle actin; SD, standard deviation; TCP, tissue culture plastic; TGF-B1
transforming growth factor-B1.

Additional file 6: Figure S6. Dispase passaging of myofibroblasts
preserved phenotype but reduced a-SMA expression. Fibroblasts were
treated with or without TGF-31 for 4 days. Thereafter, dispase was
employed to passage myofibroblasts and cultures maintained for further
7 days post-replating on TCP. Immunofluoresence images showing the
presence and distribution of a-SMA (red); and nuclei stained with DAPI
(blue). Scale bars =500 uM. a-SMA, a-smooth muscle actin; TCP, tissue
culture plastic; TGF-B1 transforming growth factor-f1.

Additional file 7: Figure S7. Immunoblots from cell layers of
myofibroblasts reseeded on fibroblast ECM. Corresponding consolidated
immunoblot showing the persistence of a-SMA expression after 4-day
TGF-B1-treated myofibroblasts were dispase passaged and reseeded onto
fibroblast ECM. ECM, extracellular matrix; TGF-B1 transforming growth
factor-B1.
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