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Abstract

Background: The dynamic process of epithelial-to-mesenchymal transition (EMT) is a causal event in kidney
fibrosis. This cellular phenotypic transition involves activation of transcriptional responses and remodeling of cellular
structures to change cellular function. The molecular mechanisms that directly contribute to the re-establishment
of the epithelial phenotype are poorly understood.

Results: Here, we discuss recent studies from our group and other laboratories identifying signaling pathways
leading to the reversal of EMT in fibrotic models. We also present evidence that transcriptional factors such as the
ZEB proteins are important regulators for reversal of EMT.

Conclusion: These studies provide insights into cellular plasticity and possible targets for therapeutic intervention.

Background
Kidney failure is a serious medical problem with limited
therapeutic choices available. The kidney is a vital organ in
the body as it regulates blood pressure, volume, pH, and
levels of electrolytes and metabolites [1]. Proximal tubule
epithelial cells are one of the key components of the
kidney as they carry out the cellular functions necessary
for filtering the blood. Epithelial cells can loose filtering
functions during injury to the kidney when exposed to
cytokines such as transforming growth factor b (TGF-b)
[2]. In many cases, injury to the kidney is temporary, with
epithelial cells able to regenerate. However, when diseases
such as diabetes, hypertension, and polycystic kidney dis-
ease are poorly controlled, chronic injury to the proximal
tubule epithelial cells, and eventually, kidney failure can
occur. Unfortunately, doctors and patients can only man-
age the medical problems that present themselves follow-
ing kidney damage since there are no treatments currently
available to regain kidney function. Thus, understanding

the molecular mechanisms leading to kidney disease and
developing specific therapies is of great importance.

Basics of epithelial-to-mesenchymal transition as a
biological process
Epithelial-to-mesenchymal transition (EMT) is the major
causative event of kidney cells loosing function during
injury of the kidney and chronic kidney disease [3,4]. The
principle behind EMT is polarized epithelial cells in well
organized layers convert to individual, motile fibroblasts
[4-7]. The transition is characterized by the loss of
epithelial morphology, reduction of cell-cell contacts,
transcriptional repression of E-cadherin expression,
degradation of cell-matrix adhesions, and rearrangement
of the actin cytoskeleton. The mesenchymal fibroblasts in
culture appear as long, spindle-shaped cells, capable of
migration and possessing the ability to produce extracel-
lular matrix. The changes that occur during the course of
EMT do not only affect the cell itself, but also the envir-
onment surrounding the cell [8-10]. This process is
reversible in normal processes such as gastrulation and
organogenesis of the heart, musculoskeletal system, and
the peripheral nervous system as well as in diseased
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states such as primary tumor metastasis [3,6]. Thus, one
way to regain kidney function would be to find therapeu-
tic agents that can reverse EMT.

Transforming growth factor-b is an essential inducer
of EMT
When basement membranes are damaged, the attached
epithelial cells secrete cytokines to initiate EMT [3,8,10].
Growth factors such as transforming growth factor-b
(TGF-b) are required to induce and maintain EMT; they
do so via both Smad-dependent and -independent signal-
ing events [7-15]. Several in vivo and in vitro models of
fibrosis exhibit increased TGF-b1 expression in damaged
tissues [3,6,10]. The cellular signaling commences by
TGF-b ligand binding to a heteromeric complex of trans-
membrane serine/threonine kinases, type I and type II
receptors (TbRI and TbRII) [15]. TbRII transphosphory-
lates TbRI, activating its kinase function. Functioning as
a docking site, TbRI then directly phosphorylates Smad2
and Smad3 at carboxy-terminal serines [16,17]. Phos-
phorylated Smad2/3 associates with Smad4 in the cyto-
plasm. This complex is then translocated to the nucleus
where it accumulates [17]. The Smad complex sequence-
specifically binds to sites in the DNA, interacting with
transcriptional coactivators or corepressors to regulate
gene expression. Numerous studies have demonstrated
that the TGF-b target genes regulating EMT are con-
trolled through Smad signaling [7,13,14]. Over-expres-
sion of Smad 2 or Smad3 leads to an increase in EMT in
mammary epithelial cells. Smad3 knockout mice exhibit
amelioration of epithelial degeneration as demonstrated
in a lens injury model. SB431542, a potent inhibitor of
TGF-b Receptor Type I (TbRI) kinase activity blocks
TGF-b-induced EMT in Namru Murine Mammary gland
(NMuMG) cells [18,19]. Over-expression of mutant TRbI
that lacks the ability to bind to Smad2/3 inhibits TGF-b-
induced EMT in NMuMg cells [20]. Over-expression of
inhibitory Smad7 blocks fibrosis in renal UUO models
and EMT in retinal epithelium in vitro [21]. Lastly, Zava-
dil and colleagues demonstrated that TGF-b fails to fully
induce EMT morphology and to stimulate key transcrip-
tional regulators in primary murine proximal tubules
cells isolated from Smad3 knockout kidneys [22].

Macromolecules may be useful to understand which
pathways are important for EMT reversal
In renal fibrosis, tubular epithelial cells undergo EMT in
response to insults generated by diseases such as diabetes
or hypertension [23,24]. The converted fibroblasts pro-
duce excessive extracellular matrix, eventually resulting
in end-state organ failure where there is currently no
method of curing available [8]. Most studies concentrate
only on blocking EMT; rarely has a study actually
reversed EMT.

Bone morphogenic protein-7 (BMP-7) is a member of
the TGF-b superfamily [15,25,26]. Its recombinant protein
ligands are in clinical trials as therapeutics for healing
bone fractures [27]. Currently, BMP-7 is the most success-
ful pre-clinical candidate to reverse EMT [2,24,28]. TGF-
b1-induced EMT was reversed by treatment for 48 hours
with 100 pM BMP-7 as observed by re-establishment of
E-cadherin at cell junctions. BMP-7 can reverse fibrosis in
an adult kidney. BMP-7 was administered in a chronic
injury mouse model and produced amelioration of kidney
fibrosis after one week. The EMT reversal was accom-
plished by BMP-7 antagonizing the TGF-b pathway and
activating the epithelial transcriptional programming
through Smads 1, 5, and 7 [28,29]. However, it remains to
be elucidated which epithelial and mesenchymal genes are
regulated by BMP-7.
Hepatocyte growth factor (HGF) is another macromo-

lecule that has been studied for its ability to reverse EMT
by antagonizing the TGF-b pathway, doing so through
induction of expression of the Smad-binding inhibitory
protein SnoN [30]. Administration of HGF partially
reverses TGF-b-induced EMT in mouse kidney cells
[31,32]. Unlike BMP-7, which is a potent reversal agent
of EMT, HGF fails to completely reverse EMT in an in
vivo UUO mouse model; a fibrotic marker is still
observed in the cells [33]. This finding can be explained
by HGF acting as an inducer of an EMT-like phenotype
termed reversible scatter, suggesting that HGF has dual
functions during cellular differentiation [34].

Results and discussion
Small molecules targeting cellular signaling protein
intermediates both elucidate major EMT signaling events
and can be developed as agents to reverse EMT
The studies using macromolecules such as BMP and HGF
elucidated major signaling pathways important for EMT
reversal. However, specific signaling pathway intermedi-
ates and transcription factors that maintain the mesenchy-
mal program were still unknown. To identify factors that
maintain the mesenchymal state, our group tested five dif-
ferent kinase inhibitors targeting TbRI, p38 mitogen-acti-
vated protein kinase (p38 MAPK), MAP kinase kinase/
extracellular signal-regulated kinase activator kinase
(MEK1), c-Jun NH-terminal kinase (JNK), and Rho kinase
(ROCK) with SB431542, SB203580, U0126, SP600125, and
Y27632, respectively, for their ability to reverse EMT
induced by TGF-b1 in primary renal cells isolated from a
TGF-b1 knockout mouse (mTEC-KO) [19,35-40]. The
mTEC-KO cells were initially exposed to TGF-b1 to
induce EMT, the kinase inhibitor was added, and the cells
were examined for signs of reversal to an epithelial state
[40]. Treatment with the single kinase inhibitors listed
above did not completely reverse the mesenchymal pheno-
type as depicted by gene expression and morphological
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changes. Of the five individual inhibitors, only the TbRI
inhibitor, SB431542, partially ameliorated the EMT pheno-
type by aiding in the reappearance of epithelial cadherins
and decreasing mesenchymal gene expression. These find-
ings suggested that blocking the TGF-b signaling pathway
during the mesenchymal state only regulates gene expres-
sion, but does not induce the structural changes required
to re-establish the epithelial phenotype.
Since EMT effects are mediated by multiple cellular

pathways, a combination of the kinase inhibitors was used
to understand if two intracellular signals need to be
blocked for EMT reversal to occur. This idea is consistent
with a study that reported reversal of a mesenchymal phe-
notype caused by conditional Fos over-expression in EpH4
through the use of a combination of constitutively active
E-cadherin and a small molecule inhibitor of TGF-b,
BIBU 3029 [41]. When our TGF-b-induced mesenchymal
cells were incubated for 24 hours with the TbRI inhibitor
SB431542 in combination with either the p38 MAPK inhi-
bitor SB203580 or the RhoA inhibitor Y27632, the epithe-
lial appearance of the cells was restored as indicated by a
reduction in stress fibers and mesenchymal gene expres-
sion [40]. Taken together, these findings indicate that
TGF-b maintains the mesenchymal phenotype through
sustained activation of Smad-dependent transcriptional
responses and elements downstream of ROCK or p38
MAPK.
The use of small molecule inhibitors of individual pro-

tein kinases not only demonstrates their potential for dis-
secting mechanisms of signal transduction for specific
ligands and for delineating their roles in biologic
responses, but also their potential as therapeutic agents.
However, it remains to be seen which molecules will be
useful for EMT reversal in clinical models.

The ZEB protein family is an attractive target as an EMT
reversal agent
The loss of transcriptional repressors from the promoter
regions of genes central to the epithelial phenotype is a
possible mechanism for the re-expression of these epithe-
lial-specific genes during the reversal of EMT induced by
macromolecules or cellular signaling kinase inhibitors.
Smad-dependent signaling up-regulates expression of sev-
eral transcription factors important for EMT induction,
including Snail (Snai1), Slug (Snai2), Twist, and members
of the ZFH family, ZEB1 (also called EF1, TCF8, AREB6,
ZFHEP, NIL-2A, ZFHX1A, and BZP) and ZEB2 (also
called SIP1, SMADIP1, ZFHX1B, and KIAA0569), making
them good candidates to regulate the reversal of EMT
[42-44]. These transcription factors activate EMT by bind-
ing to elements present in the promoter regions of a num-
ber of epithelial-specific genes including the E-cadherin
promoter, thus suppressing synthesis of this cell-cell

adhesion protein [7,45-47]. The involvement of the ZEB
transcription factors is particularly tantalizing as an EMT
reversal target since they regulate gene expression critical
for both organ development and cancer metastasis [48].
The loss of ZEB2 in fetal mice results in a number of
developmental defects, including the loss of migratory cap-
abilities of neural crest cells [49]. Others have provided
evidence for the role of the ZEB proteins during the
induction of EMT by their repressing expression of E-cad-
herin and other epithelial structural components necessary
for epithelial phenotype [44,50,51]. Additionally, the
microRNA 200 family induces mensenchymal-to-epithelial
transition in certain cancer cell lines [52]. Mutations in
the TCF8 gene (GenBank accession number NM 030751)
result in a mesenchymal-to-epithelial transition (MET) in
mouse embryos by reprogramming gene expression, lead-
ing to developmental defects by diminishing progenitor
cell proliferation and cell migration [53]. In Madin-Darby
Canine Kidney (MDCK) cells, EMT is preceded by the
loss of mature microRNA200a-c, inducing up-regulation
of ZEB1 and ZEB2 expression followed by loss of E-cad-
herin expression and transition to the mesenchymal state.
Taken together, these studies indicate transcriptional
factors such as the ZEB proteins may be a more specific
target for fibrotic therapeutics than drugs that interfere
with signaling pathway intermediates.
Our group also examined the effects of ZEB1 and ZEB2

levels during the reversal of EMT Their expression is regu-
lated by TGF-b [13], and they are highly expressed in fetal
kidney cells [54]. NMuMG cells, a traditional EMT model
[55] where ZEB is highly expressed [44], were incubated
with TGF-b1 to induce EMT, and then the five kinase
inhibitors targeting TbRI, p38 MAPK, MEK1, JNK, and
ROCK were individually added as a reversal agent [40].
We observed that reversal of EMT by the TbRI inhibitor
SB431542 involves, in part, inhibiting expression of ZEB1.
Further studies demonstrated that depleting mesenchymal
cells of ZEB1 and ZEB2 with specific shRNAs was insuffi-
cient to restore epithelial-specific protein expression such
as E-cadherin [40]. However, targeting ZEB1 and ZEB2
with shRNAs along with adding a ROCK inhibitor led to
complete reduction of stress fibers and restoration of
epithelial protein expression. Taken together, these data
provide evidence that inhibition of the TGF-b pathway
regulates the transcriptional expression of epithelial-speci-
fic genes via the ZEBs, while other factors such as the Rho
kinases are essential to re-establish the epithelial cell struc-
ture (Figure 1).
In summary, treatment strategies targeting the TGF-b

signaling pathway are attainable antifibrotic options in kid-
ney disease. Specifically, macromolecules such as BMP-7
and HGF have shown promising results in preclinical stu-
dies. Our own studies provide evidence regarding which
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specific signaling proteins and transcription factors are
involved in the EMT reversal process, thus providing
potential therapeutic targets.

List of abbreviations used
EMT: epithelial to mesenchymal transition; JNK: c-Jun NH-terminal kinase;
MEK1: MAPK/extracellular signal-regulated kinase; mTEC-KO: murine tubular
epithelial cells from TGF-β knockout mouse; p38 MAPK: p38 mitogen-
activated protein kinase; NMuMG: Namru murine mammary gland; ROCK:
Rho kinase; TGF-β: Transforming Growth Factor β; TβRI: Transforming Growth
Factor-β Receptor Type I.
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