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Abstract

Heat shock protein 27 (HSP27) is a multidimensional protein which acts as a protein chaperone and an antioxidant
and plays a role in the inhibition of apoptosis and actin cytoskeletal remodeling. In each of these capacities, HSP27
has been implicated in different disease states playing both protective and counter-protective roles. The current
review presents HSP27 in multiple disease contexts: renal injury and fibrosis, cancer, neuro-degenerative and
cardiovascular disease, highlighting its role as a potential biomarker and therapeutic target.

Review

Heat shock protein 27: canonical roles in response to
stress

Heat shock protein 27 (HSP27) belongs to the small mo-
lecular weight heat shock protein (HSP) family (12-43
kDa). HSP27 and other members of the small HSP fam-
ily share a conserved c-terminal domain, the a-crystallin
domain, which is identical to the vertebrate eye lens a-
crystallin [1]. HSP27 was initially characterized in re-
sponse to heat shock [2] as a protein chaperone that
facilitates the proper refolding of damaged proteins [3,4].
Continued investigation of HSP27 revealed that the pro-
tein responds to cellular stress conditions other than
heat shock; for example oxidative stress and chemical
stress. During oxidative stress, HSP27 functions as an
antioxidant, lowering the levels of reactive oxygen spe-
cies (ROS) by raising levels of intracellular glutathione
and lowering the levels of intracellular iron [5,6]. The
protein functions as an anti-apoptotic agent under con-
ditions of chemical stress by interacting with both mito-
chondrial dependent and independent pathways of
apoptosis (Figure 1). HSP27 binds DAXX during Fas-
FasL. mediated apoptosis and prevents the subsequent
binding of Askl by DAXX [7]. HSP27 also interacts with
Bax and cytochrome c, thereby preventing mitochon-
drial dependent apoptosis [8,9]. HSP27 is particularly
involved in protection from programmed cell death by
inhibition of caspase-dependent apoptosis [10]. These
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anti-apoptotic properties in response to chemicals (per-
ceived as stress by cells) has had major ramifications on
the success of certain chemotherapies such as doxorubi-
cin and gemcitabine [11,12]. Lastly, HSP27 has been
characterized with the ability to regulate actin cytoskel-
etal dynamics during heat shock and other stress condi-
tions, functioning both to promote actin polymerization
and as an actin capping protein [13-15].

Functional regulation by phosphorylation

HSP27 is present at basal levels in cells and tissues, and is
organized as large oligomers [16]. The protein is phos-
phorylated by MAPKAP kinase 2/3 via the activation of the
P38 MAPK pathway [14] at multiple serine residues (15, 78,
and 82 in humans and 15 and 86 in rodent HSP25 [17,18]).
Following phosphorylation, HSP27 reorganizes itself into
smaller oligomers, often dimers and tetramers [4,6,7] and
can interact with other proteins. HSP27 phosphorylation is
dynamic and regulated by cellular conditions.

This simple change in phosphorylation state regulates
many of the aforementioned canonical functions of
HSP27. For example, small tetramers of phosphorylated
HSP27 inhibit the upregulation of intracellular glutathi-
one, thereby inhibiting its function as an antioxidant [4].
During Fas-FasL mediated apoptosis, it is phosphorylated
HSP27 which binds DAXX thereby preventing DAXX
from binding Ask1 and blocking the subsequent apoptosis
cascade [7]. In the case of actin filament regulation, the
phosphorylation state of HSP27 confers dual roles. Phos-
phorylated HSP27 prevents filament degeneration and
promotes polymerization [14,15] while unphosphorylated
HSP27 acts as an actin capping protein [13].
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Figure 1 Summary of some of the major mechanisms of HSP27 on disease states. The primary mechanisms by which HSP27 acts are
protein folding, effects on the actin cytoskeleton, reduction of oxidative stress and suppression of various modes of apoptosis or other kinds of
cell death. The up-regulation that is a biomarker of some disease states is likely the cell's attempt at rescue by using HSP27 to prevent cell death
or to reduce the local oxidative stress. HSP27 presents in different oligomeric states, regulated by phosphorylation. While the phosphorylation
state is important for some interactions, as discussed in the text, this has not been addressed in this figure.
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The phosphorylation of HSP27 also regulates its phys-
ical interaction with other proteins. In neutrophils, the
serine/threonine kinase AKT is complexed with HSP27
and MAPKARP kinase 2, preventing constitutive neutro-
phil apoptosis and promoting an inflammatory response.
Phosphorylated HSP27 dissociates from AKT, disrupting
the signaling complex and promoting neutrophil apop-
tosis [19]. Conversely, in the study of atherosclerosis it
was noted that phosphorylated HSP27 preferentially
interacts with estrogen receptor  (ERp), serving as a re-
pressor and modulating estrogen signaling [20].

The functions of phosphorylated HSP27 are context
specific. HSP27 phosphorylation has been utilized by
researchers in order to develop a systematic understand-
ing of HSP27 function under multiple experimental and
disease conditions. Researchers have been able to mimic
constitutive phosphorylation by substituting the phos-
phorylateable serine residues with aspartic acid [21] and
have blocked phosphorylation by substituting phosphor-
ylateable serine residues with alanine [22] or by re-
placing the serine coding region with codons for glycine
[23]. Phosphorylated HSP27 is gaining prominence as a
therapeutic target and biomarker of disease.

HSP27 and the kidney: potentials for diagnosis and
therapy

HSP27, and its rodent homolog HSP25, are up-regulated
in various models of renal injury and fibrosis [24]. As
researchers strive to elucidate the functional and

therapeutic relevance of this observation, HSP27 is a
strong candidate as a potential biomarker for renal
disease.

Renal injury

Renal injury frequently occurs as a consequence of the
use of calcineurin inhibitor (CNI) therapy, an immuno-
suppressive regimen used during renal transplantation
[25,26]. Cyclosporine A (CsA) is a commonly used CNIL.
CsA-mediated injury is characterized by severe nephro-
toxicity, hypertension, and renal tubulointerstitial fibro-
sis. Prolonged CsA treatment resulted in the induction
of HSP25 expression in the glomeruli and cortical
tubules of rats [26]. The addition of melatonin resulted
in amelioration of fibrosis and down-regulation of
HSP25 and alpha-crystallin similar to untreated controls
[26]. While the role of HSP25 in this experiment is un-
clear, it is possible that the antioxidant effects of both
melatonin and HSP25 are similar and the presence of
one eliminates the need for the other. In an experimen-
tal model of hypertension, Ishizaka et al. found that
long-term angiotensin II treatment in rats induced
HSP25 expression in the proximal tubular epithelial cells
as well as the endothelial and medial smooth muscle
cells of the renal artery [27]. This induction was
dependent on angiotensin receptor II activation, rather
than the level of hypertension. The authors speculated
that there may be a potential protective role for HSP25/27
in kidneys with hypertensive nephropathy, similar to small
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molecular HSP32 (hemeoxygenase I; HO-I) which also
has antioxidant properties [28]. In these experiments,
HSP25/27 is protective, utilizing the antioxidant proper-
ties of this molecule.

Chronic allograft nephropathy (CAN) is a state of
chronic stress following transplant which is character-
ized by chronic inflammation. Investigators have observed
an induction of HSP25/27 and a shift in the expression
pattern from the medulla of the kidney to the cortex [29].
This ‘re-localization’ was accompanied by markers of
apoptosis such as Bax and FasL as well as markers of
hypoxia such as HIF-1a and MnSOD. The authors deter-
mined that the induction of HSP25/27 expression levels
and the change in the pattern of expression were hall-
marks of the response of the allograft to CAN-related
hypoxia and oxidative stress. Similar changes were also
seen in patients with CAN. Using BOLD-MR technology
the same investigators demonstrated impaired intra-renal
oxygenation in CAN [30]. Serum HSP27 levels were sig-
nificantly increased when compared to healthy volunteers.
In addition, there was a strong correlation between intra-
renal oxygenation and serum HSP27 levels [30]. More
recent studies examining renal perfusion in kidney
transplant recipients with magnetic resonance imaging
demonstrated a correlation between serum HSP27 and
kidney allograft perfusion, suggesting that HSP27 may be
a viable biomarker of CAN-induced hypoxia and renal
perfusion after transplantation [31]. In summary, in these
studies HSP27 is again implicated in the context of oxida-
tive stress. When conditions in the kidney become hyp-
oxic, HSP27 is up-regulated as a protective response.

The kidney is susceptible to ischemic injury, which is
characterized in part by renal epithelial cell injury and
also the up-regulation of heat shock proteins [32,33].
Increased HSP25 expression was observed in the cortex
and medulla of the kidney, along with decreased glom-
erular phosphorylation following ischemia [33]. These
reports suggested a protective role for HSP25/27 as an
actin cytoskeletal remodeling protein, both to maintain
tubular integrity during injury and also to anchor the so-
dium potassium ATPase to the actin cytoskeleton [33,34].
A similar role of maintaining actin cytoskeletal integrity
was attributed to the up-regulation of HSP27 during in-
jury to the podocytes of the glomerulus and during the en-
suing glomerulonephritis [35].

In order to closely examine the potential therapeutic
properties of HSP27 during ischemic injury, Chen et al.
[36] developed a transgenic mouse model that globally
overexpressed HSP27. In vitro experiments using pri-
mary cultures of renal epithelial cells from the trans-
genic mice resisted ischemic injury upon peroxide
induced necrosis. However the transgenic mice them-
selves fared worse than wild-type control mice, with
decreased renal function and increased inflammation
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upon ischemia-reperfusion. These experiments highlight
the need for kidney specific HSP27 expression in order
to properly explore the therapeutic nature of HSP27. A
follow up study by the same group introduced HSP27-
lentiviral constructs via injections into the kidneys 2
days prior to induction of ischemia [37]. In this study,
HSP27 overexpressing mice demonstrated significantly
lower apoptosis and necrosis, as well as lower induction
of mRNAs of various pro-inflammatory cytokines. These
mice also demonstrated better F-actin preservation in
the proximal tubules, thus substantiating a therapeutic
role for HSP27 as an actin remodeling protein during
conditions of ischemic injury. Summarizing, these experi-
ments highlight the third major function of HSP25/27,
cytoskeletal remodeling.

Renal fibrosis

Renal tubulointerstitial fibrosis is a final point of patho-
logical confluence for a variety of kidney diseases and in-
juries. It has often been defined as the final common
pathway leading to renal failure during the progression
of kidney diseases of varied etiology [38-40].

Uretero-pelvic junction (UP]) obstruction (occlusions
in the urinary tract, at the base of the kidney) and its ex-
perimental counterpart, unilateral ureteral obstructions
(UUO, surgical obstruction at the uretero-pelvic junc-
tion) are common models for the study of renal tubu-
lointerstitial fibrosis. An in-depth study by Valles et al.
[41] examined HSP27 expression in 22 patients with UP]
obstructions (congenital obstructions for 2.1+/-0.41
years). The authors attempted to correlate kidney func-
tion and duration of obstruction to HSP27 (and HSP70)
expression. They found that UPJ obstructions were char-
acterized by tubulointerstitial fibrosis and oxidative
stress. Their study concluded that patterns of HSP27 ex-
pression correlated with the duration of obstruction and
that HSP27 was induced as an adaptive response during
UP]J obstructions.

Tubular atrophy is one of the defining features of renal
tubulointerstitial fibrosis. The loss of tubular function
and integrity occurs primarily via the apoptosis of renal
tubular epithelial cells [42]. Loss of E-cadherin at the cell
membrane is a common feature of renal tubulointersti-
tial fibrosis. Following the observation of HSP27 induc-
tion in vivo during UUO, Vidyasagar et al. [24] examined
the potential protective effects of HSP27 in vitro in TGF-f1
treated proximal tubular epithelial cells, NRK52E. HSP27
was overexpressed in NRK52E cells by transiently transfect-
ing with a plasmid-HSP27 cDNA construct. TGF-p1 treat-
ment alone resulted in diminished E-cadherin protein
levels. HSP27 overexpression in TGEF-B1 treated cells
resulted in E-cadherin protein levels which were compar-
able to untreated and untransfected controls. In addition,
the E-cadherin transcriptional repressor, Snail was also
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down-regulated. These experiments suggested a thera-
peutic role for HSP27 delaying tubular injury by main-
taining E-cadherin protein levels, possibly through the
down-regulation of Snail. More recent data using mice
that overexpress HSP27 in the kidney show that during
UUO, the transgenic mice have significantly less fibrosis
than wild type (Figure 2).

Both UPJ/UUO and TGF-P1 treatment result in renal
tubulointerstitial fibrosis. In both cases, HSP27 appears
to play an adaptive or protective role, ameliorating the
fibrotic processes that characterize kidney disease.

HSP27: a biomarker of disease and emerging therapeutic
target

Cancer

Increased transcription of HSPs in tumor cells is due to
the loss of p53 functions as well as to higher expression
of proto-oncogenes such as HER and c¢-Myc and is cru-
cial to tumorigenesis [10]. The potent cytoprotective and
folding properties of HSPs are co-opted during oncogen-
esis, as the HSPs become expressed at high levels to en-
able tumor cell growth and survival. HSP27 is particularly
involved in protection from programmed cell death by in-
hibition of caspase-dependent apoptosis.
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Heat shock proteins, especially HSP27, are associated
with poor prognosis and treatment in many types of
cancer including gastric, liver, and prostate carcinoma,
osteosarcoma, rectal, lung, and breast cancer [43-45].
HSP27 is also implicated in resistance to chemotherapy
in breast cancer [44] and leukemia [43] and is associated
with acquisition of drug-resistant phenotypes [10].

On the positive side, HSPs can also become targets for
cancer therapy drugs, as well as targets for the immune
system. The massive release of HSP due to widespread
tumor cell necrosis after cytotoxic drugs can lead to CD8
+ T cell mediated anti-tumor immune responses [46].

Langer et al. [47] compared protein expression profiles
in patients with esophageal adenocarcinomas who were
responsive and non-responsive to neoadjuvant platin/5-
fluorouracil based chemotherapy. Contrary to findings in
breast cancer, the study concluded that low HSP27 ex-
pression correlated with non-responsiveness to the
chemotherapy regimen. This is one of the few instances
in which low levels of HSP27 expression correlates with
a negative outcome in cancer.

Tweedle et al. conducted a study that aimed to
characterize HSP27 levels in patients diagnosed with
colon or rectal cancer. They found a highly significant
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Figure 2 HSP27 overexpression was associated with decreased fibrosis after UUO. Tissue sections prepared from 14 day UUO kidneys from
wild type and KAP2-HSP27 transgenic mice were stained with trichrome aniline blue and quantitatively analyzed using the Nuance digital analysis
software system. Trichrome blue staining was significantly reduced in the transgenic obstructed mice as compared to wild-type mice (P < 0.01).
The data shown are representative of the group averages (n=3 in each group).
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association between high HSP27 expression and incom-
plete resection margins in rectal cancer. Elevated HSP27
was also associated with poor survival. When analyzed
separately, HSP27 expression was not associated with
survival in the colon cancer group, but was strongly cor-
related to poor survival in the rectal cancer group [45].

Metastatic breast cancers that overexpress Her2 (epi-
dermal growth factor receptor (EGFR) related tyrosine
kinase) are treated with Herceptin, a monoclonal anti-
body. However, Herceptin resistance can ensue, reducing
the efficacy of Herceptin-based chemotherapies. A 2008
study by Kang et al. [44] found that metastatic breast
cancer cell lines that overexpress Her2 and that are re-
sistant to Herceptin (SK-BR3 HR), also overexpress
HSP27. When the authors down-regulated HSP27 pro-
tein levels by transfecting with siRNA, Herceptin resist-
ance was greatly reduced in SK-BR3-HR cells. The study
also found that HSP27 could form a complex with Her2,
suggesting a potential mechanism by which the protein
potentiates Herceptin resistance. An earlier study found
that Her2 overexpressing breast cancer tumors showed
increased expression of phosphorylated HSP27, particu-
larly at serine 78 [44,48].

The association of HSP27 with tumor-specific antigens
leads to a local antibody response to HSP27. The pres-
ence of IgA anti-HSP27 antibodies has also emerged as a
diagnostic marker for gynecological malignancies such
as ovarian, endometrial, and cervical cancer. Neither
patients with benign gynecological cancers nor normal
patients demonstrate the presence of IgA anti-HSP27
antibodies. In addition, anti-cancer regimens also lead to
the decrease in IgA anti-HSP27 antibodies [49].

Preliminary studies exist, targeting HSP27 in cancer
therapy primarily through the down-regulation/inhib-
ition of HSP27 either by using chemical inhibitors or by
using anti-sense oligonucleotides. Hsu et al. showed that
while traditional chemotherapeutic agents were able to
modestly reduce tumor volume, adding the HSP27 in-
hibitor quecertin resulted in a significant reduction of
tumor volumes in vivo [50]. Thus, pharmacological in-
activation of HSP27 sensitized A549 lung cancer stem
cells to apoptotic cell death in vitro and of tumors in an
in vivo mouse model of lung cancer [50]. The use of
anti-sense oligo-nucleotides has moved into clinical
trials with OGX-427, an anti-sense oligo-nucleotide that
is complementary to HSP27. Currently, OGX-427 is in
phase II clinical trials in the United States and Canada
for various cancers such as lung, ovarian, breast, and
pancreatic cancer [51].

In summary, the cytoprotective functions exhibited by
HSP27 may have a protective role in kidney fibrosis.
However, overexpression of HSP27 is associated with
poorer outcomes in cancer by protecting malignant cells
from undergoing apoptosis. As such, HSP27 could
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become a target for the treatment and prevention of
both fibrosis and cancer.

Neuro-degenerative disease and neuronal injury
Neuro-degenerative diseases are characterized by the ac-
cumulation of mis-folded proteins. In their 2010 study
Abisambra et al. [21] not only highlighted the potential
therapeutic properties of HSP27 but also the variability
in function between in vitro and in vivo models, and the
importance of dynamic cycling between phosphorylated
and unphosphorylated forms. In vitro, HSP27 and its
constitutively phosphorylated mutant form both inter-
acted with and prevented tau accumulation. However,
upon adenoviral delivery to tau transgenic mice, only the
wild-type form of HSP27 was able to prevent tau fila-
ment accumulation. Constitutively phosphorylated HSP27
increased tau accumulation, highlighting the importance
of phosphorylation state regulation and dynamic shuttling
between the two states.

Cerebral ischemia causes neuronal injury and is char-
acterized by cell death. Kato et al. [52] demonstrated the
increased expression of HSP27 following ischemia and
reperfusion, in a time-dependent manner, in surviving
microglia and astrocytes. In order to determine the func-
tion of HSP27 up-regulation in cerebral ischemia, Stetler
et al. [53] designed transgenic mice that globally overex-
pressed HSP27. The study determined that HSP27 inhib-
ited ASK1-dependent MKK4/JNK activation, upstream
of the mitochondrial dependent pathways of apoptosis.
Thus HSP27 overexpression has potential protective
effects during cerebral ischemia and subsequent neur-
onal injury, implicating it as a potential therapeutic
agent during stroke.

Akbar et al. [54] demonstrated lower seizure activity
in response to kainic acid in transgenic mice overexpres-
sing HSP27 in the brain and spinal cord. In keeping with
the anti-apoptotic functions of HSP27 during neuronal
injury, these transgenic mice also showed reduced apop-
tosis and caspase 3 induction. This study underscores
the potential neuroprotective effects of HSP27 under
conditions of neurotoxicity.

In summary, HSP27 protects from neuronal injury pri-
marily through its role as an anti apoptotic agent.

Cardiovascular disease
Lastly, HSP27 has been implicated in cardiovascular dis-
ease both as a potential biomarker of disease and injury
as well as a potential therapeutic target [55]. As with is-
chemic brain injury, HSP27 overexpression protects
against ischemic injury of cardiac myocytes, irrespective
of phosphorylation state [22].

Atherosclerosis is a chronic multifactorial disease that
is characterized by the presence of lipids and extracellu-
lar matrix material as plaques in the arteries [55].
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Martin-Ventura et al. [56] identified HSP27 as a poten-
tial biomarker of atherosclerosis amongst a cohort of dif-
ferentially secreted proteins. They found HSP27 expression
to be decreased in atherosclerotic plaques with normal ex-
pression in healthy arteries. Wick et al. [57] confirmed that
during atherosclerosis, HSP27 is down-regulated in the
most severe plaques or the plaque core, while normal adja-
cent tissue expressed higher levels of HSP27. An in-depth
review of the involvement of HSP27 in various cardiac dis-
eases, Ghayour-Mobarhan et al. [55] suggested that
reduced HSP27 expression may favor smooth muscle
growth and plaque formation. As a therapeutic interven-
tion, maintaining normal HSP27 levels in plaques may pre-
vent plaque formation.

Though conflicting data exist as to the validity of
HSP27 antibody titers as a biomarker of cardiovascular
diseases, Shams et al. suggest that HSP27 serum anti-
body titers are directly associated with the severity of
chest pain [58].

In cardiovascular disease, HSP27 overexpression pro-
tects against ischemic injury (presumably utilizing its
antioxidant properties) and also acts as a biomarker of
disease.

Conclusions

The present summary highlights some of the recent data
examining HSP27 in its diagnostic and therapeutic cap-
acities. Despite increasing evidence to substantiate HSP27
as biomarker in many disease states, more studies are
needed to address the discrepancies and evaluate the spe-
cific response of this small HSP depending on the context.
Another challenge lies in utilizing this knowledge towards
therapy. Organ specific targeting is necessary and a thor-
ough understanding of HSP27 phosphorylation state in
each disease condition is essential. The precedent has
been set by cancer research to utilize HSP27 as a thera-
peutic target. The future of HSP27 therefore augurs its de-
velopment as a multidimensional therapeutic agent and
target.
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