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Diabetic angiopathy and angiogenic defects
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Abstract

Diabetes is one of the most serious health problems in the world. A major complication of diabetes is blood vessel
disease, termed angiopathy, which is characterized by abnormal angiogenesis. In this review, we focus on
angiogenesis abnormalities in diabetic complications and discuss its benefits and drawbacks as a therapeutic target
for diabetic vascular complications. Additionally, we discuss glucose metabolism defects that are associated with
abnormal angiogenesis in atypical diabetic complications such as cancer.
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Review
The epidemic of obesity-associated type 2 diabetes
has prompted the need for strategies to prevent and
treat diabetic complications [1]. In diabetes, diverse
sets of organs are damaged. Such organ damage is
certainly fundamentally associated with glucose me-
tabolism defects. Therefore, normalizing blood glucose
levels is essential for diabetic therapy [2-4]. However,
recent evidence suggests that normalization of blood
glucose levels is challenging in diabetes, and such in-
tensive therapies in diabetic patients are associated
with increased mortality risk, likely associated with
frequent hypoglycemia [5]. To this end, patients en-
rolled in the intensive therapy group of the ACCORD
trial, which employed intensive blood glucose lower-
ing strategies aimed to normalize blood sugar levels,
exhibited increased mortality [5]. Therefore, to prevent
diabetic complications, additional therapeutic strategies
are required in addition to those that target blood
glucose normalization.
Angiopathy is a term for vascular defects that are asso-

ciated with angiogenic abnormalities [6]. Understanding
the precise molecular mechanisms that lead to diabetic
angiopathy is essential for designing new therapeutic
strategies to treat diabetic complications. In this review,
we focus on diabetic vascular defects and abnormal
angiogenesis.
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Angiogenesis
Angiogenesis is characterized by new blood vessel for-
mation from pre-existing vessels and is distinguished
from vasculogenesis, which is de novo vessel formation
from hematopoietic progenitor cells [7]. Angiogenesis is
essential for proper development and organ homeostasis,
such as placental and embryonic growth, collateral for-
mation, wound healing, and granulation [8]. However,
angiogenesis is not always healthy and is often associated
with pathologic conditions, in which case it is referred
to as pathologic angiogenesis [7]. Angiogenesis results
from the balanced functions of pro- and anti-angiogenic
molecules (Figure 1). Defects in the angiogenic balance
may cause a shift towards either excessive or anti-
angiogenesis. Among angiogenic regulators, vascular
endothelial growth factor (VEGF) has been associated
with several diabetic complications, particularly diabetic
retinopathy.
In diabetes, angiogenesis is regulated in an organ-,

tissue-, and cell type-specific manner [9]. For example,
in the retina, VEGF likely plays pro-angiogenic roles;
thus, neutralizing VEGF is one anti-angiogenesis thera-
peutic strategy that is currently employed in clinical set-
tings [10,11]. However, in the diabetic heart, VEGF
signals are disturbed and collateral vessel formation is
disrupted in spite of VEGF levels that are similar to
those in non-diabetic subjects [12]. In cancer cells, high
glucose induces the accumulation of hypoxia inducible
factor (HIF)-1α and the associated expression of VEGF;
however, in normal cells, such exposure to high glucose
inhibits HIF-1α and VEGF expression [13,14].
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Figure 1 Schematic image of angiogenesis switch. Angiogenesis results from the balanced functions of pro-angiogenic and anti-angiogenic
molecules. Defects in the angiogenic balance lead to a shift toward either excessive angiogenesis or anti-angiogenesis. CSF, colony-stimulating
factor; EGF, epidermal growth factor; FGF, fibroblast growth factor; FLT1, fms-related tyrosine kinase 1; HGF, hepatocyte growth factor; IGF, insulin-
like growth factor; MMP, matrixmetalloproteinases, PDGF, platelet-derived growth factor; PECAM-1, platelet endothelial cell adhesion molecular
(also known as CD31); PEDF, pigment epithelium-derived factor; TGFβ, transforming growth factor-β; TIMP, tissue inhibitor of metalloproteinases;
TNFa, tumor necrosis factor-α; VE, vascular endothelial; VEGF, vascular endothelial growth factor.

Figure 2 sFllt1 plays as endogenous inhibitor of VEGF signaling
by trapping free-VEGF. VEGF signaling is strictly regulated by
endogenous molecules, including sFlt1. sFlt1 binds to and
sequesters VEGF from cell-surface VEGF receptors, subsequently
VEGF modulated pro-angiogenesis signal is inhibited.

Xu et al. Fibrogenesis & Tissue Repair 2012, 5:13 Page 2 of 9
http://www.fibrogenesis.com/content/5/1/13
Abnormal angiogenesis and diabetic retinopathy
The abnormal angiogenesis that occurs in diabetic
retinopathy has been well characterized. In diabetic
retinopathy, the pericytes of the retinal capillaries are
injured, which is associated with defective capillary
function [15-19]. Such capillary deficiency is asso-
ciated with defects in proper oxygen delivery and nu-
trient supply, resulting in VEGF overproduction in
the retina [17]. This VEGF overproduction is also
associated with abnormal angiogenesis and enhanced
retinal capillary permeability, resulting in retinal dys-
function associated with the loss of visual acuity in
these patients [17-19]. One therapeutic approach for
diabetic retinopathy, light coagulation, has been per-
formed for several years in clinical settings; however,
this treatment is insufficient by itself.
In the ocular system, VEGF signaling is strictly regu-

lated. For example, the cornea is an avascular organ, and
this lack of vascularity is regulated by abundant soluble
VEGF receptor 1 (also known as sFlt1), which is a
secreted protein that binds and sequesters VEGF from
the VEGF receptors on the cell surface (Figure 2) [20].
The only mammal with a vascularized cornea is the mana-
tee, which is due to a lack of corneal sFlt1 [20]. These
properties of VEGF have enabled scientists to design
molecules that target and normalize VEGF signaling using
similar mechanisms to sFlt1, the endogenous VEGF
blocker (Figure 2). Therefore, anti-VEGF molecules, such
as pegaptanib sodium (Macugen), ranibizumab (Lucentis),
and bevacizumab (Avastin) have been developed.
In 2004, the U.S. Food and Drug Administration

(FDA) approved pegaptanib sodium for the treatment of
age-related macular degeneration, in which abnormal
VEGF signals are associated with abnormal angiogenesis
and edema in the retina, similar to diabetic retinopathy
[21]. Pegaptanib sodium was the first anti-VEGF drug
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approved for ocular disease. This provided seminal evi-
dence that VEGF is responsible for the ocular diseases
that are associated with abnormal angiogenesis [22]. In
later clinical trials, ranibizumab was shown to be effect-
ive in more than 90% of the cases of age-related macular
degeneration [23,24]. The FDA has approved bevacizu-
mab to treat colorectal cancer, but it has not been
approved for the treatment of ocular diseases; however,
this drug is being tested clinically for treating age-related
macular degeneration [25]. Anti-VEGF therapy is also ef-
fective for diabetic retinopathy [10], indicating a critical
role for VEGF in the pathogenesis of this disease.

Abnormal angiogenesis and diabetic nephropathy
Diabetic nephropathy is the leading cause of end-stage
renal disease worldwide. The number of patients requir-
ing hemodialysis because of diabetic kidney-associated
diseases has increased tremendously over the past two
decades. Once renal function has deteriorated, many asso-
ciated cardiovascular events can occur [26-28]. Therefore,
more research is needed to discover novel strategies to
prevent or slow this decline in renal function. Further-
more, the therapeutic targeting of angiogenic abnormal-
ities provides substantial clinical benefits. However, the
contribution of VEGF to diabetic nephropathy-induced
angiogenesis is complicated.
First, we review VEGF biology in the normal kidney,

which is based on the experiences of cancer patients that
have been treated with bevacizumab [29]. These patients
displayed hypertension, edema, proteinuria, and glom-
erular capillary damage [30-32]. Similar renal microcircu-
lation effects have been reported in rodents after human
sFlt1 injection [33], adenovirus-mediated humans Flt1
overexpression [34], or endothelial specific VEGF deletion,
which induced endothelial damage with microthrombi
[35]. It is also hypothesized that the actions of anti-
VEGF molecules might be associated with microcircu-
lation injuries that occur in pre-eclampsia patients
[34,36,37]. Therefore, VEGF is essential for the homeo-
static maintenance of renal hemodynamics. In contrast,
VEGF overproduction in the glomerular podocytes is
associated with glomerular capillary collapse and HIV-
associated glomerulopathy [38,39].
In diabetic nephropathy, abnormal angiogenesis in the

glomeruli, as well as VEGF overexpression, has been
reported, similar to diabetic retinopathy [40,41]. The
properties of these abnormal vessels and how these ves-
sels are associated with the pathogenesis of diabetic
nephropathy are not well described. In experimental ani-
mal models, anti-VEGF therapy [41-44] or administering
anti-angiogenesis molecules [45-49] may reverse such
abnormal angiogenesis in diabetic kidneys, concomi-
tantly reducing albumin excretion into the urine. How-
ever, recent evidence suggests that the neutralization of
VEGF by sFlt1 in diabetic animal models ameliorates ab-
normal vasculature in the glomeruli, but in the intersti-
tium, sFlt1-mediated VEGF neutralization caused the
deterioration of pathological lesions [50]. These data
demonstrate the complexity of the VEGF overproduction-
associated angiogenic pathways in diabetic kidneys. There-
fore, angiogenesis abnormalities in diabetic nephropathy
progression are still controversial, and further research
needs to be conducted to determine whether, and how,
abnormal angiogenesis can be therapeutically targeted.

Abnormal angiogenesis and atherosclerosis
Atherosclerosis-associated coronary artery disease is a
major cause of mortality in diabetic patients. It is likely
that plaques, the core atherosclerotic lesions, play essen-
tial roles in the onset of life-threatening coronary artery
disease. The plaque begins as a fatty streak, an ill-
defined yellow lesion-fatty plaque, which develops well-
demarcated edges, and evolves to fibrous plaques, which
are whitish lesions with a grumous lipid-rich core [51].
The rupture of these plaques following the enlargement
of the necrotic core is associated with luminal throm-
bosis in acute coronary syndrome, which occurs in 75%
of patients who die of an acute myocardial infarction
[52]. However, the mechanisms by which asymptomatic
fibroatheromatous plaques progress to high-risk, un-
stable lesions are not clear.
Intra-plaque hemorrhage may play an important role

in the process of plaque destabilization [53]. Red blood
cell (RBC) membranes are rich in phospholipids and free
cholesterol, and RBC accumulation within the plaques
plays an important role in the progression of plaque in-
stability [54]. The RBC source within the coronary
lesions is therefore important, and it is likely that leaky,
immature vessels within the plaque allow the entry of
RBCs into the lesions [54]. In the unstable or ruptured
plaque, newly formed vessels are found in abundance
[54]. Pathologic examination of unstable lesions has
demonstrated that intraplaque hemorrhage and plaque
rupture are associated with increased microvessel dens-
ity. Although most intraplaque vasa vasorum are
endothelialized, only a few have mural cells such as peri-
cytes and vascular smooth muscle cells [55,56]. This lack
of mural cells may contribute to vessel leakiness because
such vessels are fragile and are therefore easily damaged.
This damage results in the development of immature
vessels within the lesion, which are associated with ab-
normal angiogenesis [57].
During plaque progression, the plaque becomes com-

plicated and is composed of infiltrated inflammatory
cells, smooth muscle cells, and extracellular matrix in
the large artery intima [57]. Inflammatory cells such as
T-cells and macrophages may contribute to VEGF pro-
duction within the lesion [57]. Plaque progression may
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be associated with decreased oxygen and nutrient supply
within the lesion [58-60], which directly leads to HIF-1α
accumulation and the subsequent induction of pro-
angiogenic molecules. Therefore, inflammation and hyp-
oxia within plaque lesions could activate angiogenesis
and contribute to the plaque instability that is associated
with abnormal angiogenesis.

Wound healing defects in diabetes and angiogenesis
Wound healing capacity in diabetic patients is decreased.
The normal process of wound healing is characterized
by five sequential processes: (1) hemostasis, (2) inflam-
mation and debridement, (3) proliferation, (4) epitheliali-
zation, and (5) remodeling [61]. The delayed wound
healing in diabetic patients has been attributed to distur-
bances in the inflammation/debridement and prolifera-
tion phases [61,62]. In the wound healing process,
microangiopathy may also contribute to defects in the
nutrient/oxygen supply, thus inhibiting normal healing
processes [63]. Both clinical research and animal models
have confirmed such wound healing defects in diabetes.
In diabetic patients, chronic non-healing ulcers are fre-

quently observed at pressure points of the lower extrem-
ities [62]. Pathological analysis has revealed abnormal
microvessels that can be cuffed with collagen, laminin,
fibronectin, or fibrin in the wound edges of these dia-
betic ulcers [64]. Fibroblasts isolated from diabetic ulcers
display diminished proliferative capacity and abnormal
morphological features, such as multiple lamellar and
vesicular bodies, an absence of microtubular structures,
and enlarged, dilated endoplasmic reticulum, indicative
of a hypertrophic phenotype [61]. Such alterations would
be functionally relevant to angiogenic defects within the
wound because fibroblasts play essential angiogenic roles
by producing several pro-angiogenic cytokines such as
VEGF and fibroblast growth factors [65], and because
microtubules are important for fibroblast migration
[66,67].
Another possible cause of wound healing defects in

diabetes patients has been associated with altered biol-
ogy of bone marrow-derived endothelial progenitor cells
(EPCs) [68,69]. EPCs are thought to be essential in vas-
culogenesis and wound healing, but their functions and
numbers in the circulation and within wounds have been
shown to be compromised in diabetic patients [68-75].
Defects in the recruitment of EPCs for re-endothelialization
has been suggested in diabetes patients [76]. VEGF sig-
naling, matrix metalloproteinases, and endothelial nitric
oxide synthase (eNOS) have been shown to play essen-
tial roles for the recruitment of EPCs into wounds
[77,78]. Recently, Albiero et al.. showed that EPCs in
diabetic patients exhibited both proliferative defects and
enhanced apoptosis without altering the number of cir-
culating EPCs [79], suggesting that diabetes affects EPC
survival signaling, and such a survival defect could be a
potential therapeutic target for treating defects in dia-
betic wound healing.

Abnormal angiogenesis and cancer
Diabetes increases mortality risk in cancer patients
[80,81]. Cancer patients who already have diabetes re-
portedly have a greater chance of dying of the cancer
than those who do not [80]. Furthermore, cancer
patients with preexisting diabetes exhibit approximately
a 50% greater risk of dying after surgery [81]. There are
many theories for this diabetes-associated increase in
mortality, such as possible links to glucose-mediated
cancer growth, immunodeficiency, infections, or other
health problems. Diabetes is also associated with the
diagnosis of more advanced cancers [82]. Therefore,
there are possible links between cancer-accelerating fac-
tors and diabetes.
Several clinical trials have demonstrated that anti-

angiogenesis therapy is beneficial for cancer treatment
[83], suggesting that increased angiogenic signals con-
tribute to cancer progression. Tumor hypoxia is a strong
angiogenesis inducer via accumulation of HIFs and their
downstream targets, such as VEGF. These angiogenic
abnormalities may be relevant to the association be-
tween cancer and diabetes. In tumor cells, high levels of
glucose induce the accumulation and expression of HIF-
1α, whereas non-tumor cells exhibit decreased HIF-1α
accumulation in response to high glucose [13,14], sug-
gesting that impaired glucose homeostasis directly
affects angiogenic signals within tumors.
Type 2 diabetes is characterized by insulin resistance

and hyperinsulinemia. Hyperinsulinemia induces breast
cancer development in experimental animal models [84].
Type 2 diabetes is often associated with obesity, which is
another risk factor for cancer [85]. Additionally, patients
with type 2 diabetes exhibit increased levels of insulin-
like growth factor (IGF)-1, a potent mitogen and pro-
angiogenic factor that may contribute to carcinogenesis
[86]. IGF-1 promotes liver metastasis in xenograft colon
adenocarcinoma models in obese mice [87]. Further-
more, insulin resistance in type 2 diabetes is associated
with diacylglycerol (DAG) accumulation in cells [88,89].
DAG accumulation can cause activation of the protein
kinase C family of serine-threonine kinases [89], which
play important roles in cancer biology and abnormal
angiogenesis in diabetic patients [90].
In cancer biology, angiogenesis is closely connected

with inflammation [91,92]. Recently, Park et al. reported
that enhanced inflammation in obesity is associated with
liver carcinogenesis [93]. They used leptin-deficient ob/ob
mice and high-fat diet (59% fat, 15% protein, 26%
carbohydrate)-induced obesity models and found that
diethylnitrosamine-induced hepatocellular carcinoma
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(HCC) is significantly advanced in the both of these mur-
ine obesity models [93]. The high-fat diet also resulted in
increased growth of subcutaneous-injected HCC [93]. The
mechanisms of obesity-induced liver carcinogenesis were
found to be associated with hepatic activation of the Stat
signaling pathway and inflammation [93]. To this end, de-
pleting inflammatory cytokines interleukin-6 or tumor
necrosis factor-α in the liver of obese mice abolished
the tumor-promoting effect of obesity, thus suggesting
a critical role of inflammation in obesity-associated
carcinogenesis [93].
Leptin levels are often elevated in obesity-induced type

2 diabetes, which could be another possible connection
to abnormal angiogenesis and cancer. Leptin induced
endothelial cell proliferation both in vivo and in vitro
[94]. Using androgen-insensitive murine prostate carcin-
oma RM1 cells, Ribeiro et al. recently reported that ob/
ob mice, which lack leptin, and diet-induced obese mice
exhibited large tumors. Conversely, db/db mice, which
express leptin but have a mutation in the leptin receptor,
displayed small tumors, suggesting that leptin has a
tumor-suppressive role [95]. However, Gonzalez et al.
reported that leptin may accelerate murine breast tumor
growth because it induces VEGF-mediated angiogenesis
[96], even though the mouse model used in this study
was the immunodeficient SCID mouse, which is neither
diabetic nor obese [97]. Similarly, leptin induced prolif-
eration and invasiveness of endometrial cancer cells [98].
Recently, Bartucci et al. found that the leptin receptor is
expressed on colorectal cancer stem cells; therefore, lep-
tin may induce tumor growth and interferes with the
cytotoxic effects of the anti-cancer drug 5-FU [99].

Diabetes in pregnancy and vascular defects of the
embryo and placenta
The vasculature is the first embryonic system to develop
and is vulnerable to insults from the uterine environ-
ment. Hyperglycemia is associated with embryonic vas-
culopathy, which may lead to embryonic lethality or
malformation [100-106]. The molecular mechanisms
underlying maternal diabetes-induced embryonic vascu-
lopathy are unclear. Several in-vitro and ex-vivo studies
suggest that exposure to high glucose induces anomalies
in the yolk sac microvasculature [107,108]. Embryos in
streptozotocin-injected pregnant female mice exhibit ab-
normal angiogenesis and vasculogenesis [108]. Recently,
Yang et al. reported that decreased accumulation of
HIF-1α in the conceptus when cultured in high-glucose
media might be associated with decreased VEGF, thus sug-
gesting that HIF-1α homeostasis may be the key to under-
standing embryonic diabetes-induced vasculopathy [109].
Developing the placental vasculature is essential for

the developmental homeostasis of the placenta and fetus.
Defects in the placental vasculature are associated with
placental hypoxia, which may result in the onset of pre-
eclampsia [110], the devastating pregnancy-associated
hypertensive syndrome. Maternal hyperglycemia, caused
by either pre-existing or pregnancy-induced diabetes,
has been associated with increased incidence of placental
defects and pre-eclampsia. Morphologically, diabetic preg-
nancy is characterized by reduced fetal capillary branching,
maldevelopment of the villous tree, and impaired adapta-
tion of maternal vasculature during pregnancy [111-117].
Diabetic mothers without pre-eclampsia tend to have
decreased levels of pro-angiogenic molecules [118]. How-
ever, the poor development of the placental vasculature in
pre-eclampsia is most likely not a result of imbalance
among VEGF signaling pathways, but rather of complex
interactions among maternal spiral arteries and the tropho-
blast [110,119-121]. Inflammation in the maternal-fetal
interface is also essential for development of the placen-
tal vasculature [122-125]. Therefore, all of these mole-
cules may be relevant in the placental and embryonic
angiogenesis defects that occur in diabetic pregnancies.
These points should be clarified by further research.

Perspective
In this review, we summarized and discussed diabetic
angiopathy while focusing on angiogenic defects. Sys-
temic angiogenesis modification therapies that either
inhibit or activate angiogenesis are not acceptable
therapeutic strategies because of the potential adverse
reactions that may occur. Therefore, there is a need
to target locally acting molecules, such as VEGF, to
treat diabetic retinopathy. To this end, inhibition of
ocular VEGF has emerged as a promising treatment
modality for diabetic retinopathy and is currently
being evaluated in clinical trials. However, anti-VEGF
therapy for the treatment of diabetic retinopathy is of
limited use and involves potential adverse reactions
such as retinal ischemia, vasoconstriction, inflamma-
tion or detachment [126-131]. Another possible strat-
egy for treating VEGF-mediated angiogenesis defects
could be to target mediators of VEGF intracellular
signaling pathways such as phosphoinositide 3-kinase,
Akt, protein-kinase C, mitogen activated protein
kinases, or nitric oxide. However, avoiding potential
adverse effects would be essential and tissue specifi-
city could be an important issue.
We focused on the role of the VEGF system in diabetic

angiopathy and angiogenetic defects in this review. How-
ever, other molecules contribute to abnormal angiogen-
esis in diabetes. As shown in Figure 1, various pro- and
anti-angiogenic molecules could be relevant in the
pathogenesis of diabetes-induced angiogenesis defects.
The role of fibroblast growth factors and angiopoietins
in the onset of diabetic nephropathy and/or retinopathy
has been previously demonstrated [132]. A potential for



Figure 3 The biology of angiogenesis abnormality in diabetic
organ dysfunction. In diabetes, the angiogenesis signal is regulated
in an organ-, tissue-, and cell type-specific manner. In the retina,
atherosclerotic plaque, kidney glomerulus, and cancer, VEGF likely
plays pro-angiogenic roles; on the contrary, in diabetic heart, kidney
tubule, peripheral vessels, and placenta, VEGF signal is inhibited.
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targeting several other endogenous anti-angiogenic fac-
tors such as platelet factor-4, angiostatin, endostatin,
vasostatin, and tumstatin has also been described for
preclinical diabetic angiopathy treatment [132]. These
are all potent, significant molecules, and further research
is required to determine how these findings can be ap-
plied in clinical settings.

Conclusion
In diabetes, the VEGF response likely depends on the
cell type and organ (Figure 3). Additionally, hypoxic
responses and the induction of the master hypoxia tran-
scription factor, HIF-1α, depends on the cell type
[13,14]. Altered angiogenesis is a well-defined pathogen-
esis of diabetic angiopathy, although to therapeutically
target angiogenesis defects, further research to identify
tissue, organ, and disease-specific molecules is necessary.
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