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Abstract

Although kidney transplantation has been an important means for the treatment of patients with end stage of
renal disease, the long-term survival rate of the renal allograft remains a challenge. The cause of late renal allograft
loss, once known as chronic allograft nephropathy, has been renamed “interstitial fibrosis and tubular atrophy” (IF/TA)
to reflect the histologic pattern seen on biopsy. The mechanisms leading to IF/TA in the transplanted kidney include
inflammation, activation of renal fibroblasts, and deposition of extracellular matrix proteins. Identifying the mediators
and factors that trigger IF/TA may be useful in early diagnosis and development of novel therapeutic strategies
for improving long-term renal allograft survival and patient outcomes. In this review, we highlight the recent advances
in our understanding of IF/TA from three aspects: pathogenesis, diagnosis, and treatment.
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Review

For many years, chronic allograft nephropathy (CAN) was
used to describe the progressive loss of renal function in
transplanted kidneys over time not related to acute rejec-
tion. However, consensus began to form that the term did
not sufficiently describe the underlying disease process.
Interstitial fibrosis and tubular atrophy (IF/TA) describes
the histologic characteristics of allograft destruction over
time. While IF/TA has come to replace CAN [1], it is still
not a specific disease, but a pattern of injury that has many
underlying causes. The fundamental mechanism of inter-
stitial fibrosis is the imbalance of extracellular matrix
metabolism and abnormal accumulation via interaction
of various inflammatory cytokines. Its pathogenesis has
not been fully elucidated and existing therapy is not
effective in improving renal transplant function.

Pathogenesis of IF/TA

Previous studies indicated that IF/TA is a late feature of
the renal allograft. However, increasing evidence has
shown the same features of chronic histological damage
as early as three months post-transplant. Moreover, the
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development of IF/TA is progressive, eventually resulting
in chronic renal dysfunction [2]. IF/TA is associated with
decreased graft survival, especially when it is accompan-
ied by transplant vasculopathy, subclinical rejection, or
transplant glomerulopathy. In a 3-month protocol biopsy
study in which biopsies were classified according to the
presence or absence of arterial intimal thickening, graft
survival was significantly reduced in patients with trans-
plant vasculopathy [3]. The simultaneous presence of
IF/TA and incipient transplant glomerulopathy implies
a shorter graft survival than the presence of IF/TA without
transplant glomerulopathy. Moreover, it was reported that
10-year graft survival was 95% in patients with normal
histology, 82% in patients with IF/TA without transplant
vasculopathy, and 41% in patients with IF/TA and trans-
plant vasculopathy [4]. In the past several decades, nu-
merous studies have been conducted to understand the
pathogenesis of IF/TA and multiple factors and mecha-
nisms have been demonstrated to be involved in the
progress of the IF/TA, including immunosuppressive
drug toxicity, antibody-mediated injury, and epithelial—
mesenchymal transition (EMT) (Figure 1).

Immunosuppressive drug toxicity

Immunosuppressive drugs are closely associated with the
development of IF/TA. Although the targets of immunosup-
pressive drugs are cells involved in the immune response,
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Figure 1 Identified mechanisms involved in IF/TA after kidney transplantation.
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they also have toxic effects on epithelial, endothelial,
and mesenchymal-origin cells [5]. Chronic nephrotoxic
effects of calcineurin inhibitors may be associated with
late allograft dysfunction and reduced allograft half-life.
The introduction of calcineurin inhibitor (CNI) therapy —
first cyclosporine (CsA) in the 1980s and later tacrolimus —
was initially hampered by early dosing regimens that led to
a wide variety of side effects. CNI can cause microvascular
and glomerular damage, arteriolar hyaline deposition,
tubular atrophy, and striped interstitial fibrosis. Nephro-
toxicity in the first year post-transplant correlates with the
60% rate of such pathology in CNI-treated recipients [6].

The exact mechanism of immunosuppressive drug-
mediated renal toxicity is not fully understood. It is evi-
dent that both cyclosporine and tacrolimus can cause
renal and systemic vasoconstriction through increased
release of endothelin-1, activation of the renin-angiotensin
system, increased production of thromboxane A,, and
decreased production of vasodilators such as nitric oxide
and prostacyclin [7]. Cyclosporine can also cause oxidative
stress through uncoupling mitochondrial oxidative phos-
phorylation, inhibition of the Krebs cycle, and activation
of anaerobic glycolysis in the cytosol. In addition, tubu-
lointerstitial fibrosis associated with CNI toxicity is also
related to increased intrarenal transforming growth factor-
B (TGE-B) mRNA expression [8]. TGF-f can promote
interstitial fibrosis by decreasing the degradation and
increasing the production of extracellular matrix pro-
teins [9,10].

Activation of the mTOR pathway has been associated
with extracellular matrix synthesis and renal fibrosis. It

has been reported that blocking the mTOR pathway with
rapamycin can reduce renal interstitial fibrosis in an
obstructive nephropathy rodent model by diminishing the
number of interstitial fibroblasts and myofibroblasts [11].
mTOR inhibitors also decrease TGF-1 expression and
significantly regress glomerular hypertrophy, mesangial
fibrosis, and tubulointerstitial damage in various animal
models of kidney injury and renal transplant patients
[12,13]. Despite that inhibition of the mTOR pathway
can attenuate renal fibrosis in animal models, applica-
tion of rapamycin in patients with CNIs did not result
in consistent beneficial effects. Pontrelli et al. [14] have
reported that rapamycin can substantially reduce intersti-
tial fibrosis in renal transplant recipients. Gonzalez et al.
[15] demonstrated that switching from CNI to sirolimus
for kidney transplants could also slow the course of
IF/TA. However, Servais et al. [16] did not find a
significant reduction in fibrosis after 1 year when patients
were converted from CNIs to rapamycin 12 weeks after
renal transplantation. Moreover, some recent studies have
shown certain nephrotoxic potential of rapamycin
especially when given in combination with high doses
of CNIs [17,18].

Antibody-mediated injury

IF/TA is the common pathological finding of various
chronic kidney diseases including chronic renal allograft
dysfunction resulting from antibody-mediated rejection
(AMR), which is caused by circulating antibodies to donor
alloantigens expressed on the endothelium. Several groups
have recently reported that glomerulitis and peritubular
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capillaritis (microcirculation or microvascular inflammation)
correlate with donor specific antibody (DSA) and graft
failure in renal transplants [19-21]. There is also a wealth
of literature indicating the incidence and deleterious im-
pact of donor-specific HLA antibodies [22]. However, gro-
wing evidence suggests that anti-bodies against non-HLA
antigens may also contribute to AMR in solid organ trans-
plantation. Reports show that 10% to 23% of recipients are
presensitized to non-HLA antigens [23,24], whereas 22%
form non-HLA antibodies after transplantation [25]. The
mechanisms of antibody-mediated graft injury are primar-
ily driven by the effector functions of the Fc fragment of
HLA antibodies, whereas experimental evidence indicates
that the Fc promotes chronic inflammation and prolifera-
tion independent of antibodies [26-28].

Many studies have shown that C4d is an important
marker of complement activation in the AMR, and C4d
sediment can be found around renal tubular capillary by
immunohistochemical staining techniques. Racusen et al. re-
ported that, in biopsies of renal transplant patients suspected
of having acute rejection, deposition of C4d complement
fragments on the surface of endothelial cells is observed in
more than 50% of peritubular capillaries and C4d3 is an
important marker of an antibody-mediated immune
response [29,30]. Recently, other studies have shown that
C4d staining of glomeruli correlates with glomerulitis, an
inflammatory lesion [31]. Valente et al. further pointed out
that C4d staining of glomerular endothelial cells indicates
glomerular endothelial damage [32]. However, C4d as a
sign of AMR has certain limitations, because there is no
expression of C4d in AMR. Sis et al. proposed that DSA
titers have a higher sensitivity and accuracy than C4d in
predicting progression to graft failure [19]. Renal transplant
recipients with de novo DSA (dDSA) experience higher
rates of rejection and worse graft survival than dDSA-free
recipients. In a nested case—control study of adult kidney
and kidney-pancreas recipients from July 2007 through
July 2011 in a single center, Devos et al. demonstrated that
development of dDSA is associated with increased inci-
dence of renal graft loss [33] and graft failure after kidney
transplantation [34]. Consequently, antibodies play an im-
portant role in the progression of renal allograft injury.

The effect of macrophages on renal allograft injury

Previous studies indicated that macrophages exist within
the transplanted kidney. These cells are derived from re-
cruited monocytes. In addition to promotion or attenu-
ation of inflammation and participation in innate and
adaptive immune responses, macrophages mediate tissue
injury and fibrosis, as well as tissue repair [35]. Recruited
macrophages are generally divided into two phenotypes,
M1 and M2, which have distinct functions. M1 phenotypes
are proinflammatory macrophages that exacerbate renal
cell damage, whereas M2 phenotypes are anti-inflammatory
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macrophages that promote epithelial and vascular re-
pair. Insufficient vascular and epithelial healing despite
abundant growth factor secretion would promote switch
macrophages to profibrotic ‘M2a/wound healing’ macro-
phages that accelerate fibrogenesis and consequently renal
allograft injury [36]. Evidence supports the notion that
macrophages play an important role in promoting this
process. For example, Qi et al. [37] have shown that mac-
rophages mediate endothelial cell cytotoxicity leading to
loss of renal microvasculature using a transgenic condi-
tional ablation strategy to deplete circulating monocytes
and infiltrating renal macrophages after kidney transplant-
ation. Thus, it is evident that macrophage ablation
reduced histologic features of rejection (arteritis, tubulitis)
and the accompanying rarefaction of peritubular capillar-
ies. The identification of macrophages immunopositive for
inducible nitric oxide synthase implicated nitric oxide
generation as a possible mechanism of endothelial cell
cytotoxicity. These data indicate a significant role for
macrophages in causing acute rejection-related tissue
injury.

Renal tubular epithelial to mesenchymal transition

IF is characterized by activation and proliferation of renal
interstitial fibroblasts and accumulation of excessive
amounts of extracellular matrix. The activation and ex-
pansion of matrix-producing cells occur through multiple
sources and mechanisms, including activation of intersti-
tial fibroblasts and pericytes, recruitment of circulating
fibrocytes, and phenotypic conversion of tubular epithelial
and endothelial cells [38,39]. EMThas been reported to
contribute to the process of fibrosis in various organs,
including kidney [40,41]. Several studies have shown that
epithelial cells with an altered phenotype have been ob-
served in transplanted kidneys with features of IF/TA [42].
Among the many fibrogenic factors that regulate renal fi-
brotic processes and EMT, TGF-f has been considered to
play a central role [43-48]. TGF-P1 is upregulated in ani-
mal and human kidney allografts undergoing chronic re-
jection and chronic CsA-induced tubulointerstitial fibrosis
[49,50]. TGF-B1 binding to the TGF receptor induces
Smad2/3 phosphorylation. Smad2/3 are then translocated
to the nuclei where they promote expression of TGF-p
regulated genes including collagen I. In contrast, bone
morphogenetic protein (BMP-7) has been identified as a
natural antagonist of TGF-Blsignaling and administration
of exogenous BMP-7 also protects against renal fibrosis in
several experimental models [51-54]. Furthermore, BMP-7
is effective in repressing expression of proinflammatory
cytokines including interleukin-6 and interleukin-1, and
chemokines in human renal tubular cells [55]. Thus,
inhibition of EMT may improve clinical outcomes of renal
transplant patients.
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Factors involved in inflammation and fibrosis of the renal

allograft

A disintegrin and metalloproteinase 17 (ADAM17)

A disintegrin and metalloproteinase 17(ADAM17) is
implicated in both pro-inflammatory and pro-fibrotic
processes, which positions it as a possible target of
intervention in a variety of diseases. It has been reported
that an ADAM17 inhibitor was effective in reducing renal
fibrosis in angiotensinll-induced kidney disease in mice
[56]. Another study has also indicated that ADAM17-
mediated production of soluble heparin binding epidermal
growth factor (HB-EGF) is also involved in renal fibrosis
via activation of EGF receptor (EGFR) signaling [57].
Therefore, ADAM17 may be implicated in interstitial renal
damage after transplantation.

Hypoxia-inducible factor-1a (HIF-1a)

Studies have shown that infiltrating inflammatory cells
are detected in IF/TA and contribute to long-term renal
allograft failure [58,59]. For example, infiltrating mono-
cytes/macrophages and their related chemokines/cyto-
kines influence the long-term survival of renal allografts
[60,61]. The infiltrating inflammatory cells contribute to
IF/TA of chronic kidney transplant recipients through an
HIF-1a signaling-dependent pathway. HIF-laparticipates
in fibrosis through regulating the expression of connective
tissue growth factor (CTGEF). Moreover, Yu et al. evaluated
renal transplant recipients who underwent renal allograft
biopsy with IF/TA, and found the expression of HIF-la
protein in filtrating inflammatory cells in areas with IF/TA
in patients with chronic allograft dysfunction [62]. The
expression of HIF-la in the infiltrating macrophages/
monocytes in chronic allograft dysfunction provides a
novel role of HIF-1« in inflammation that may be caused
by hypoxia which is not alloreactive [63]. HIF-1a may pro-
mote EMT development through regulating fibrotic gene
expression during I/R injury in human renal tubular epi-
thelial cells, and miR-21 could be among the important
regulatory pathways in the process [64].

Fibroblast-specific protein chemokine CCL21 and chemokine
receptor CCR7

The CCL21/CCR7 signaling pathway has been shown
to participate in the development of renal fibrosis [65].
It is well known that activation of fibroblasts is the
key mechanism of kidney fibrosis [66]. Zhou et al.
found that the CCL21/CCR7 signaling pathway con-
tributes to renal allograft fibrosis through activation of
renal fibroblasts. Furthermore, fibroblast surface protein-
positive fibroblasts may be a risk factor for acute/active
cellular rejection and chronic/sclerosing allograft
nephropathy [67].
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Diagnosis

Early detection of IF/TA is important for effective manage-
ment of potential chronically progressive injury in the
transplanted kidney by minimizing risk factors associ-
ated with graft injury. At present, the gold standard is
histological evaluation of tissue from renal biopsies. How-
ever, the currently used methods are ineffective, inaccur-
ate, or invasive, and suffer from limitations in predicting
outcomes. Recent studies have identified numerous spe-
cific biomarkers from blood and urine for monitoring of
graft function after kidney transplantation that prove
useful in earlier diagnosis (Table 1).

Blood biomarkers

Oxidative stress parameters

Oxidative stress may be the mechanism responsible for
toxic effects and IF/TA caused by immunosuppressive
drugs. It is evident that some immunosuppressive drugs,
especially calcineurin inhibitors, contribute to an increase
of oxidative stress [68]. Furthermore, oxidative stress is
one of the most important components of ischemia/
reperfusion process after kidney transplantation and
increases with graft dysfunction. Fonseca et al. performed
a prospective study of 40 renal transplantation recipients
to evaluate time-dependent changes in oxidative stress-
related parameters within the first week after trans-
plantation and to assess their performance in predicting
delayed graft function at one year. They found that in-
creased malondialdehyde levels on day 1 after renal trans-
plantation might be an early prognostic indicator of IF/TA,
and levels on day 7 might represent a useful predictor
of one-year graft function [69]. Therefore, monitoring
oxidative stress will be beneficial to the early diagnosis
of progression of IF/TA.

Table 1 Biomarkers in IF/TA after kidney transplantation

Biomarkers References
Blood

Malondialdehyde [69]
Monocytes [70-73]
MMP/TIMP system [74-79]
DNA microchimerism [80-87]
Urine

MRNA : KIM-1 [91-94]
mMiRNA: miRNA-22, mir-140-3p, mir-125b, etc. [95-97]
CcCL2 [98-100]
CTGF [101]
Vitamin D binding protein [102]
Retinol binding protein [103]

MMP, Matrix metalloproteinases; TIMPs, Tissue inhibitors of metalloproteinases;
KIM-1, Kidney injury molecule-1; CTGF, Connective tissue growth factor.
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Monitoring circulating monocytes

Several studies have reported a relationship between
excessive extracellular matrix protein and macrophage
infiltrate. In addition, infiltrating macrophages corre-
lated with formation of myofibroblasts. Increasing studies
showed the accumulation of macrophages in damaged
kidney allograft and macrophages are involved in the
development and progression of kidney fibrosis. In animal
models of chronic allograft nephropathy with IF/TA, mac-
rophages are accumulated in the damaged kidney. In
kidney recipients, the presence of macrophages in early
biopsies is predictive of IF/TA [70,71]. Moreover, blockade
of macrophage recruitment may reduce renal fibrosis [72].
Guillén-Gémez et al. also showed that monitoring mono-
cytes could be a new tool for early identification of graft
dysfunction in renal transplant patients by analyzing the
phenotype of circulating monocytes [73]. However, the
proposition also needs further experimental and clinical
study.

Matrix metalloproteinases (MMPs)/tissue inhibitors of
metalloproteinases (TIMPs) system

MMPs which belong to the large family of metzincins, are
produced by renal cells (tubularepithelial cells, mesangial
cells, and endothelial cells), and play a critical role in
extracellular matirx remodeling [74,75]. However, MMPs
can be specifically inhibited by tissue TIMPs. Increasing
evidence reveals that the dysregulation of MMPs and
TIMPs contributes to remodeling of kidney structure
in patients with chronic allograft injury [76]. Recently,
Mazanowska et al. proposed assessingTIMP-1 plasma
levels to estimate allograft injury and suggested that
they may be a useful biomarker in clinical practice to
monitor for IF/TA [77]. In addition, serum MMP-2 and
MMP-7 levels are higher in patients with IF/TA compared
to kidney transplant patients with normal allograft func-
tion (estimated glomerular filtration rate (eGFR) =90 mL/
min), suggesting potential non-invasive biomarkers for
IF/TA [78]. Yanet al.have also reported that abnormal
expressions of MMP-2 and TIMP-1 attributed to the
development of IF/TA in chronic active antibody-mediated
rejection [79]. Thus, monitoring the dysregulation of
MMP/TIMP system may aid in the diagnosis of renal
allograft fibrosis.

DNA microchimerism in blood of transplant recipients

The development of microchimerism, a phenomenon of
the persistence of donor cells in the peripheral blood of
renal transplant recipients, has been considered to be
positively associated with the acceptance of trans-
planted organs [80,81]. Several case reports show that
a microchimerism-positive finding in the recipients of
renal transplantation is an index of acceptance of trans-
planted kidney, as shown by the relative longer survival
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time of transplanted kidneys in the recipients [82,83]. It
was reported that the survival time of transplanted kidneys
was significantly longer in microchimerism-positive recipi-
ents (8.7 years) than in microchimerism-negative recipi-
ents (5.4 years). The serum creatinine levels, measured
at 1 year after transplantation, were significantly lower
in the microchimerism-positive recipients than in the
microchimerism-negative recipients [84]. Although the
exact mechanisms by which microchimerisms formed
remain largely unknown [85,86], the microchimerism was
proposed to be derived from kidney cells, organ-contained
leukocytes, or blood stem cells [87]. From a clinical point
of view, microchimerisms might be one of several im-
munological mechanisms associated with long-term graft
survival.

Urine biomarkers

Urine mRNA and miRNA

Non-invasive, cost-effective biomarkers that allow frequent
and accurate monitoring of graft function are needed in
kidney transplantation [88,89]. As a biofluid, urine allows
repeated and non-invasive collection, and its molecular
composition highly reflects intrarenal events [90]. Many
researchers assess mRNA levels of urinary pellets for
the evaluation of chronic allograft dysfunction with IF/TA
[91,92]. Kidney injury molecule-1 (KIM-1) is a protein
present in toxic and ischemic acute renal injury and in
chronic kidney diseases [93]. Nogareet al. suggested that
quantification of KIM-1 mRNA in urinary sediment cells
may be used as a non-invasive biomarker of fibrosis in
kidney grafts with IF/TA [94].

Recently, microRNAs (miRNAs) have emerged as a
biomarker for a variety of diseases. Several studies indi-
cated that global miRNA expression changes are associ-
ated with IF/TA of kidney allografts [95,96]. Maluf et al.
established miRNA signatures in urinary cell pellet sam-
ples from patients with and without biopsy-proven IF/TA
using microarrays [97]; they identified a number of differ-
entially expressed miRNAs in urinary cell pellets in pa-
tients histologically diagnosed upon renal biopsy as having
IF/TA. Moreover, through the analysis of differentially
expressed miRNAs in urinary cells, 22 miRNAs were found
to be associated with IF/TA in patients [97]. Thus, urine
mRNA and miRNAs may be potential biomarkers for
monitoring allograft function and anticipating progression
of IF/TA.

Urinary CCL2

Early non-invasive markers that identify patients at risk
of renal allograft loss may stratify patients for more inten-
sive monitoring or therapy. CCL2 is a CCR2 receptor che-
mokine that is a chemoattractant protein for monocytes/
macrophages, T cells, and natural killer cells, and is gener-
ated by multiple cell lineages, including local tubular and
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glomerular epithelial cells as well as infiltrating monocytes/
macrophages and lymphocytes [98,99]. In addition, Ho
et al. have demonstrated, in a multicenter renal trans-
plant cohort, that urinary CCL2 at 6 months is an in-
dependent predictor for the development of IF/TA at
24 months [100]. They also found that urinary CCL2:
creatinine at 6 months is an independent predictor of
death-censored renal allograft loss.

Urinary CTGF

CTGF has been considered as a biomarker of chronic renal
allograft injury characterized by TA/IF. Shi et al. have dem-
onstrated that urinary CTGF is an early predictor of TA/IF
using a rat model. In an allogenic rat kidney transplant
model, they found that typical morphological changes in-
cluding TA/IF in allograft appeared at week 8 and became
very severe at week 12 post-transplantation. In addition,
CTGF expression in epithelium was up-regulated early and
urinary CTGF was markedly elevated from week 4. Serum
creatininein recipients was stable before week 8 but in-
creased tremendously at week 12. Urinary CTGF increases
earlier than the appearance of biochemical abnormalities
and pathological changes. Thus, measurement of urinary
CTGF may offer a potential non-invasive strategy to pre-
dict the early onset of chronic renal allograft injury [101].

Urinary vitamin D binding protein and retinol binding
protein

Increased urinary protein excretion is common after renal
transplantation and portends worse outcome. Mirkovi¢
et al. investigated the value of urinary vitamin D binding
protein excretion (WWDBP) as a tubulointerstitial inflam-
mation and fibrosis marker in adriamycin rats, and tested
whether uVDBP parallels renal damage and responds to
therapy intensification in humans [102]. They propose that
uVDBP may be a novel urinary biomarker of tubulointer-
stitial damage, independently of albuminuria. Prospectively
designed studies are needed to validate these findings and
confirm their relevance in the clinical setting. It has also
been proposed that urinary excretion of retinol binding
protein is a sensitive marker of allografts at risk. Amer et al.
analyzed urine samples from 221 individuals one year after
renal transplantation, showing that urinary retinol binding
protein excretion is a sensitive marker of allograft fibrosis,
which can predict long-term graft loss independent of
histology and urinary albumin [103].

Treatment

Development of IF/TA is a complex process that in-
volves multiple factors and system interaction. Currently
available treatments cannot effectively slow the progression
of IF/TA and improve renal graft function. Some newly de-
veloped approaches may be beneficial for prolonging renal
graft survival in the future. Those strategies include anti-
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EMT agents, antioxidant therapy, tubular epithelial cell
repair, and mesenchymal stem cell therapy.

Anti-EMT agents

EMT of renal tubular epithelial cells is thought to con-
tribute to the progression of renal tubulointerstitial fibrosis.
Antagonism of EMT could thus postpone and reverse renal
interstitial fibrosis. Norcantharidin (NCTD) is a promising
agent for inhibiting renal interstitial fibrosis [104]. Li et al.
suggest that NCTD can antagonize tubular EMT by inhi-
biting the Smad pathway [105]; as such, NCTD treatment
may preserve the normal epithelial phenotype and moder-
ate tubular EMT.

Increasing evidence suggests that recombinant human
erythropoietin (rHuEPO) protects neurons and cardio-
myocytes from acute insults. Lee et al. investigated the
protective effect of rHUEPO on cyclosporine-induced
renal injury, suggesting that rHUEPO has a renoprotective
effect against cyclosporine-induced chronic renal injury
[106]. Park et al. have observed that recombinant human
erythropoietin could inhibit the progression of renal fibro-
sis in mice with complete unilateral ureteral obstruction
and the TGF-B1-inducedEMT in MDCK cells [107].

Kidney transplant recipients usually have low vitamin D
levels, especially in the early post-transplantation period.
Bienaimé et al. studied a prospective cohort of 634 kidney
recipients who underwent transplantation at a single insti-
tution and found that low 25-hydroxyvitamin D con-
centration measured 3 months after transplantation is an
independent risk factor for interstitial fibrosis progression
and is associated with a lower eGFR one year after trans-
plantation [108]. In mouse models of renal fibrosis, Ito
et al. have also demonstrated that 25-hydroxyvitamin D
treatment prevents renal fibrosis through the suppression
of TGE-B-SMAD signal transduction [109]. Synthetic
ligands of the vitamin D receptor that target the TGE-
B-SMAD signaling pathway, which is known to regulate
fibrosis-associated gene expression, ameliorated renal fi-
brosis in two different mouse models [110]. Thus, further
investigation of vitamin D and related compounds for
treatment of humans with chronic kidney fibrosis will be
interesting.

Studies indicate that rapamycin has antiangiogenic and
antiproliferative effects. Wu et al. have reported that rapa-
mycin can significantly attenuate tubulointerstitial damage
in a UUO-induced rat model of renal fibrosis, suggesting
that rapamycin may have the potential to delay the progres-
sion of tubulointerstitial renal fibrosis [111]. In addition,
Ko et al. have reported that sirolimus retards the devel-
opment of chronic allograft dysfunction in a rat model
[112]. By analyzing 20 renal transplant recipients who
were treated with rapamycin, Ozdemir et al. have also
found that rapamycin-treated patients have a lower in-
cidence of diffuse interstitial fibrosis [113]. Studies are
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underway to test whether using rapamycin as part of a
calcineurin-sparing regimen actually affects long allo-
graft function.

As TGEF-f is involved in the pathogenesis of chronic
rejection in kidney transplants [114] and contribute to
development of EMT [115-118], TGF-p might be a key
target for treating chronic rejection [119,120]. Guan et al.
[121] have evaluated the efficacy of an anti-TGF-f3 mono-
clonal antibody in the prevention of chronic rejection of
renal allografts. They demonstrated that administration
of anti-TGF-f antibody successfully reduces the severity
of chronic kidney transplant rejection in a rat model,
suggesting the therapeutic potential for the anti-TGF-3
antibody to prevent the chronic rejection of kidney trans-
plants or prolong kidney transplant survival in patients.

BMP-7 is a natural TGF-f antagonist and has powerful
renoprotective and anti-fibrotic effects [122-124]. It has
been reported that administration of BMP-7 reduces glom-
erular and tubulointerstitial fibrosis in various experimen-
tal models of acute and chronic renal injury. Most of these
studies have suggested that the principal target of BMP-7
in the kidney are renal epithelial cells. It protects against
renal fibrosis through counteracting the profibrotic effects
of TGF-B1 in glomerular mesangial cells and renal epithe-
lial cells.

Antioxidant therapy

Oxidative stress inhibition is likely to be involved in
delaying the progression of renal interstitial fibrosis. Evi-
dence indicates that alpha-lipoic acid (ALA) is a powerful
antioxidant and exhibits a protective effect against renal in-
jury. ALA also improves albuminuria and pathology in dia-
betes by reducing oxidative stress [125]. Wongmekiat et al.
demonstrated that ALA supplementation attenuates renal
interstitial fibrosis in rats with obstructive nephropathy
[126]. Oxygen free radicals are important components
involved in the pathophysiological processes observed
during ischemia reperfusion. Sehirli et al. indicated that
ALA reverses ischemia reperfusion-induced oxidant
responses and improves microscopic damage and renal
function [127].

Syndecan-1

Syndecan-1, a heparan sulfate proteoglycan, has an im-
portant role in wound healing by binding several growth
factors and cytokines. Clearly, repair of renal tubular dam-
age is a crucial step in restoration of renal function upon
transplantation. In addition, the balance between tubular
epithelium functional repair and injury of chronic inflam-
mation and fibrosis, is a dominant factor that determines
renal allograft function in the long term [128]. Celie et al.
have proposed that syndecan-1 plays an important role in
tubular epithelial survival and repair in the renal allograft.
Up-regulating the expression of syndecan-1 may help
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shifting the balance in the renal allograft towards func-
tional restoration rather than IF/TA [129].

Everolimus

Everolimus is an immunosuppressive macrolide. The initial
clinical trials of everolimus were conducted in combination
with standard-dose CsA, a regimen that demonstrates an
equivalent efficacy to standard-dose CsA and mycopheno-
late mofetil with regards to the incidence of acute rejection.
In several subsequent trials, the efficacy of everolimus
has been evaluated via CNI minimization protocol, a
strategy that usually maintains the efficacy and preserves
renal function [130-132]. The safety and efficacy of different
everolimus levels in combination with reduced-exposure
CNI have also been confirmed [133,134]. In the CENTRAL
pilot study, the conversion from CNI to everolimus over-
night at week 7 after kidney transplantation showed a sig-
nificant improvement in renal function at 6 months [135].

Mesenchymal stem cell (MSC) therapy

Endogenous resident MSCs have been shown to play im-
portant roles in local repair in the kidney, including main-
taining the endothelium stabilized. Cell therapies applied to
solid organ transplantation have gained interest in the last
years, and among them, MSC therapy has gained much at-
tention.In addition to the regenerative properties of resident
kidney MSCs, exogenously administered MSCs enhance
the intrinsic reparative capabilities of the kidney. Numerous
experimental models have demonstrated that MSCs
attenuate alloimmune responses by suppression of allo-
geneic T-cell responses both in vitro and in vivo [136,137].
In addition, Franquesa et al. demonstrated a therapeutic
effect of MSC in attenuating the progression of IF/TA.
MSC injection results in an effective and long-term pro-
tection against kidney allografts [138]. Other studies have
also shown that allogeneic MSC injection could decrease
proteinuria and fibrosis in a 5/6 nephrectomy model
[139,140]. Moreover, in a Col4A3 knock-out model of
chronic allograft dysfunction, syngeneic MSCs are able
to reduce interstitial fibrosis, while allogeneic MSCs do
not ameliorate the progression of the disease [141]. A
recent clinical trial showed the unexpected deleterious
short-term effects of MSC therapy when given MSCs at
the early stages after transplantation [142]. Thus, MSCs
may be effective in preventing the progress of IF/TA.
However, the exact mechanism and its safety require
further clarification.

Conclusions

Long-term renal allograft survival after kidney transplant-
ation remains variable, depending on a host of factors. Un-
derstanding the mechanisms leading to the final common
pathway of IF/TA in the transplanted kidney is important
for early diagnosis and development of treatment strategies
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to prolong allograft life. Recent studies have suggested that
immunosuppressive drug toxicity, antibody-mediated in-
jury, EMT, pro-inflammatory, and pro-fibrosis factors are
involved in the IF/TA. Multiple approaches, such as moni-
toring blood and urine samples, may be promising tools
for early detection of IF/TA. Treatments for IF/TA, such as
anti-EMT agents, antioxidant therapy, tubular epithelial
repairing, and mesenchymal stem cell therapy, are under
investigation. With further development of therapies to
prevent or at least slow the progression of interstitial
fibrosis and tubular atrophy, the improved long-term
survival of renal transplants and delaying the return to
dialysis will be hopeful.
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