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Abstract

Liver fibrosis is defined as excessive extracellular matrix deposition and is based on complex interactions between
matrix-producing hepatic stellate cells and an abundance of liver-resident and infiltrating cells. Investigation of
these processes requires in vitro and in vivo experimental work in animals. However, the use of animals in
translational research will be increasingly challenged, at least in countries of the European Union, because of the
adoption of new animal welfare rules in 2013. These rules will create an urgent need for optimized standard
operating procedures regarding animal experimentation and improved international communication in the liver
fibrosis community. This review gives an update on current animal models, techniques and underlying
pathomechanisms with the aim of fostering a critical discussion of the limitations and potential of up-to-date
animal experimentation. We discuss potential complications in experimental liver fibrosis and provide examples of
how the findings of studies in which these models are used can be translated to human disease and therapy. In
this review, we want to motivate the international community to design more standardized animal models which
might help to address the legally requested replacement, refinement and reduction of animals in fibrosis research.

Keywords: Animal models, Animal welfare, Cholestasis, Cirrhosis, EU-Directive 2010/63, Fibrosis, Hepatic stellate
cells, Hepatocellular carcinoma, Liver immunology, Translational medicine
Review
Current concepts in liver fibrosis research
Fibrosis and cirrhosis are both strictly defined patho-
logical entities that were broadly defined by pathologists
and hepatologists several decades ago [1,2]. Cirrhosis is a
diffuse process characterised by fibrosis and the conver-
sion of normal liver architecture into structurally abnor-
mal nodules that affect the whole organ [1]. Fibrosis is
defined as the presence of excess collagen due to new
fibre formation that causes only minor clinical symp-
toms or disturbance of liver cell function [1]. However,
disease-associated abnormalities, including portal hyper-
tension, might be caused by fibrosis alone, depending on
its location within the liver [1]. Although hepatic fibrosis
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in humans can be caused by various stimuli (congenital,
metabolic, inflammatory, parasitic, vascular, toxins or
drugs), the molecular mechanisms underlying fibrosis
are basically the same [3]. Following liver injury of any
kind, a defined program of molecular changes occurs
that is highly orchestrated at the cellular and molecular
levels [4]. This process is characterized mainly by cellu-
lar activation of hepatic stellate cells (HSCs) which ac-
quire a myofibroblast (MFB) phenotype and are able to
express and deposit large quantities of extracellular
matrix (ECM) components within the liver [5,6]. If the
insult is temporarily, these changes are transient and
liver fibrosis may resolve. If the injury is sustained, how-
ever, chronic inflammation and accumulation of the ECM
persist, leading to progressive substitution of normal liver
parenchyma by scar tissue. In this scenario, the pool of
matrix-producing cells is further enlarged by other precur-
sors of MFBs that are recruited from portal fibroblasts
and circulating bone marrow–derived, fibroblast-like cells,
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termed fibrocytes. These cells are attracted by soluble me-
diators within the injured organ, and all contribute to the
massive ECM within the affected organ (Figure 1). As a
consequence, the composition of the ECM in the injured
tissue is altered in regard to quantity and quality from the
physiological matrix [4]. In the pathogenesis of chronic
liver disease, ECM homeostasis is further disturbed by an
unbalanced activity of matrix metalloproteinases (MMPs)
and their tissue inhibitors (TIMPs). MMPs represent a
large family of zinc- and calcium-dependent enzymes that
are responsible for the degradation of ECM proteins. Acti-
vated HSCs and MFBs have been identified as prominent
cellular sources of MMPs and TIMPs [7]. The combin-
ation of various MMPs and TIMPs depends on the disease
phases and results at later stages of liver injury in an ex-
pression pattern in which MFBs express a combination of
MMPs that have the ability to degrade normal liver matrix
while inhibiting degradation of the fibrillar collagens that
accumulate in liver fibrosis [8].
Moreover, investigators have shown that epithelial cells

(that is, hepatocytes, cholangiocytes or other hepatic pro-
genitors) can transition into mesenchymal cells in a process
termed epithelial-to-mesenchymal transition (EMT) [9]. Al-
though the hypotheses regarding the underlying mecha-
nisms of this process are presently controversial [10-12],
the mechanisms might reflect clear differences in cellular
behaviour in vitro and in vivo [13]. Although this exciting
discussion of EMT is ongoing, a recent study proposed
that mesothelial cells also have the potential to transition
into mesenchymal fibrogenic cells via a mechanism called
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Figure 1 Pathogenetic concepts in hepatic fibrogenesis. Hepatic fibrog
including viruses, alcohol and drugs. At the cellular level, liver residential ce
profibrogenic cells (PCs; circulating fibrocytes and marrow-derived stem ce
extracellular matrix (ECM) components. The pool of fibrogenic cells is furth
nonparenchymal epithelial cells transition into mesenchymal cells, and furt
mesothelial cells from the organ surface migrate into the inner part of the
the turnover of the ECM is changed, several biomarkers are released, physi
characteristic of liver insult develop. MFB, myofibroblast; MMP, matrix meta
mesothelial-to-mesenchymal transition (MMT) [14]. Al-
though this concept is extremely challenging and adds a
good explanation of the occurrence of cellular hetero-
geneity, deeper insights into the precise mechanisms lead-
ing to MMT are mandatory to estimate their impact on
hepatic fibrogenesis. Diseased organs that undergo fibro-
genesis are marked by the simultaneous existence of in-
flammation, apoptosis, necrosis, pyroptosis and wound-
healing. Fibrogenesis results in clinical symptoms, changes
in physical features of the liver and release of biomarkers
that are directly or indirectly linked to the inflammatory
or fibrotic activity within the liver (Figure 1).
Experimental studies that were conducted in isolated

primary hepatic cells and experimental animal models
led to the identification of general pathogenetic media-
tors––signalling pathways that are involved in the
fibrogenic response. Aberrant activity of transforming
growth factor β1 (TGF-β1) or members of the platelet-
derived growth factor family are the most prominent
drivers of cellular activation and transdifferentiation of
HSCs into MFBs [4]. In addition, several chemokines that
are released by diverse infiltrating cell populations modu-
late the inflammatory reaction and contribute to the pro-
gression of HSC activation and the fibrotic insult [15],
demonstrating the complexity of the disease process.
Some of the temporal sequences of molecular events asso-
ciated with HSC activation can be appropriately repro-
duced in primary HSC cultures or even in immortalized
cell lines [16]. Cell lines are prone to genotypic and
phenotypic drift at high passage numbers, however, and
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are definitely not suitable for mimicking the complex
cellular dynamics of HSCs in primary culture. On the
basis of this fact, it is obvious that all experimental find-
ings have to be critically evaluated in suitable models
that reflect the pathogenetic mechanisms of human
hepatic disorders before they can be translated into rou-
tine clinical treatments. Therefore, meaningful findings
with biological relevance can only be determined in pri-
mary cells or, even better, in the in vivo context with ac-
ceptance of an ethical framework.
In fibrosis research, experimental work in rodents

is presently the gold standard to confirm a proposed
disease-associated mechanism and specialized proto-
cols that should closely mimic one or the other clinical
situation (Figure 2). Moreover, readout systems for
liver insults are similar, and sometimes even identical,
in humans and animals and include blood tests, biopsy
and noninvasive imaging techniques. However, the
findings obtained by using these methods may vary be-
tween different laboratories and are influenced by the
institutional or country-specific stipulations under which
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Figure 2 Translational aspects of fibrosis research. In hepatology resea
models, as well as models for portal hypertension, hepatocellular carcinom
models, disease progression is associated with hepatic fibrogenesis. These
both the experimental setting (animals) and the clinical setting (humans), t
analysis, histocytochemical analysis and noninvasive imaging techniques. A
duct ligation; CCl4, Carbon tetrachloride; DMN, Dimethylnitrosamine; NASH
respective experiments are performed. Therefore, a Gold
Standard Publication Checklist (GSPC) for animal studies
was recently proposed that should reduce the number of
animals used, lead to more reliable outcomes of animal
studies, improve the overall quality of scientific papers
based on animal experimentation and follow the idea of
evidence-based medicine in science [17]. In addition, it is
self-evident that more precise international standards and
guidelines that would reduce the overall experimental
variation and increase the methodological quality of ani-
mal research would further contribute to refinement and
reduction of animal experimentation and better translate
the findings observed in respective models to the clinic.
These intentions were started in 1959, when Russell and
Burch proposed an ethical framework for conducting sci-
entific experiments with animals that is based primarily
on the replacement, refinement and reduction (3R)
principle [18]. This ethical framework has been the subject
of intensive debate in which viewpoints shifted signifi-
cantly during the 20th century [19-21]. As a consequence
of all these debates, all member states of the European
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Union (EU), for example, have to implement EU-Directive
2010/63 regarding the protection of animals used for sci-
entific purposes in 2013.
In this review, we summarize current animal models

that are in use and describe the mechanisms that under-
lie the formation of hepatic fibrogenesis. We discuss
basic necessities that will affect fibrosis research in ac-
cordance with the new European Animal Welfare Rules
that will be implemented at the end of 2013.

Current animal models in liver fibrosis research
Cholestatic models of liver injury
Cholestatic liver injury is one of the major causes of liver
fibrosis and cirrhosis in patients with acute or chronic
liver disease. Damage to the biliary epithelium and bile
duct injury can lead to end-stage liver disease, liver fail-
ure, organ transplantation or death. The clinical charac-
teristics of this condition are cholestasis, inflammation
and liver fibrosis. Multiple causes of bile duct injury
have been described. These include autoimmune dis-
eases (that is, primary biliary cirrhosis (PBC) and pri-
mary sclerosing cirrhosis (PSC)), obstructive conditions
(cholelithiasis and tumour compression of bile ducts)
and toxic injury (drugs, chemicals and detergents). To
analyse the pathophysiologic processes leading to chole-
static liver injury, animal models mimicking these mul-
tiple specific conditions have been generated in the past.
These mouse models often focus on specific causes of
cholestatic liver disease, such as bile duct obstruction
and autoimmune or direct toxic injury.
Surgical bile duct ligation (BDL) is the most common

model used to induce obstructive cholestatic injury in
mice and rats. Typically, a midsection laparotomy is
performed while the animals are under deep anaesthesia,
and the common extrahepatic bile duct is ligated twice
and dissected. After 21 to 28 days, mice and rats develop
jaundice and a strong fibrotic reaction originating from
the periportal fields [22]. Different operation techniques
have been described for special study settings. Special oper-
ating procedures allow reconnection or reanastomosis after
bile duct ligation [23]. Other techniques have been de-
scribed, such as partial BDL [24] or microsurgical methods
[25]. This model allows a fast and reproducible way to in-
flict cholestatic liver injury. Furthermore, this model can be
used in transgenic mice easily, allowing the investigation of
cholestatic injury in many different study designs.
In recent years, many genetically modified mouse models

used to study chronic cholestasis and/or autoimmune liver
fibrosis have been described. Genes altered in these mice
include the multi-drug-resistant gene 2 (MDR2), trans-
forming growth factor β receptor type IIa (Tgfbr2), inter-
leukin 2Rα (Il2ra), Ae2a,b and NOD.c3c4. MDR2 in mice
and MDR3 in humans are class III multi-drug-resistant
P-glycoproteins which act as canalicular phospholipid
translocators and are involved in biliary phospholipid
(phosphatidylcholine) excretion. In humans, mutations in
the ABCB4 gene encoding MDR3 are usually associated
with the loss of canalicular MDR3 protein and/or the
loss of protein function. These mutations are associated
with low biliary phospholipid levels, resulting in a high
biliary cholesterol saturation index. Accordingly, several
human diseases are linked to mutations of the ABCB4 gene
(progressive familial intrahepatic cholestasis, low phospho-
lipid–associated cholelithiasis syndrome, intrahepatic chole-
stasis of pregnancy, drug-induced liver injury, transient
neonatal cholestasis and adult biliary fibrosis) [26].
Likewise, an MDR2 (Abcb4) gene knockout in mice

results in a deficiency in excretion of phosphatidyl-
choline into bile. Low biliary phospholipid levels trigger
nonpurulent inflammatory cholangitis with portal in-
flammation and ductular proliferation beginning shortly
after birth and progressing to end-stage disease in the
course of 3 to 6 months. The animals develop a pheno-
type resembling sclerosing cholangitis with biliary fibro-
sis and hepatocellular carcinoma [27].
Transgenic mice overexpressing a dominant-negative

TGF-β receptor restricted to T cells (dnTGFβRII mice)
develop an inflammatory biliary ductular disease that
strongly resembles human PBC [28]. Next to a spontan-
eous production of antimitochondrial antibodies (AMAs)
directed to the same mitochondrial autoantigens as in hu-
man disease (for example, the E2 component of the pyru-
vate dehydrogenase complex (PDC-E2), the E2 subunit of
the branched chain 2-oxo-acid dehydrogenase complex
(BCOADC-E2) and the E2 subunit of the 2-oxo-glutarate
dehydrogenase complex (OGDC-E2)), these mice show a
lymphocytic liver infiltration with periportal inflammation
similar to histological changes in human PBC.
Another murine model for human PBC is a knockout

mouse strain lacking the interleukin 2 receptor, α chain
(IL2Rα) gene. These mice spontaneously develop portal
inflammation and biliary ductular injury similar to that of
human patients. Portal cell infiltrates show many CD4+

and CD8+ T cells and increased levels of interferon γ
(IFN-γ), tumour necrosis factor α (TNF-α), IL-2 and IL-
12p40, indicating a type 1 T helper (Th1) cytokine–domi-
nated immune response. Again, these mice not only de-
velop significantly increased serum levels of IgG and IgA
but also show AMAs specific for PDC-E2, typically found
in human PBC [29].
Expression of AMAs, paired with immunological and

pathological findings similar to human PBC, is also
found in mice with a disrupted Ae2a,b gene. Apart from
an enlarged spleen, increased production of IL-12p70
and IFN-γ, an expanded CD8+ T-cell population and low
numbers of CD4+FoxP3+/regulatory T cells, these mice
show an extensive portal inflammation with infiltrating
CD8+ and CD4+ T lymphocytes surrounding damaged
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bile ducts. Cholangiocytes isolated from these mice show
gene expression changes compatible with oxidative stress
and increased antigen presentation [30].
Another model for PBC are NOD.c3c4 mice con-

genically derived from the nonobese diabetic strain that
develop an autoimmune biliary disease resembling hu-
man PBC. These mice are completely protected from
diabetes by B6/B10 regions on chromosomes 3 and 4
that contain B6/B10 insulin-dependent diabetes (Idd)
loci. Furthermore, they develop AMAs to PDC-E2 that,
as in human PBC, are specific for the inner lipoyl do-
main. Biliary duct inflammation shows infiltration with
CD3+, CD4+ and CD8+ T cells. NOD.c3c4 mice treated
with monoclonal antibodies to CD3 are protected against
biliary injury. In this model, the central role of T cells in
developing characteristic symptoms of PBC can be shown.
After performing an adoptive transfer of splenocytes or
CD4+ T cells, NOD.c3c4-scid mice develop bile duct injury
characterized by destructive cholangitis, granuloma forma-
tion and eosinophilic infiltration as seen in human PBC.
However, NOD.c3c4 mice also develop injury of the extra-
hepatic biliary ducts [31].
Bile duct injury is also inducible by immunization with

different agents. Obviously, in most animal models mim-
icking human PBC, AMAs against PDC-E2 play a cru-
cial role. Therefore, another mouse model was generated
by the immunization of mice with 2-octynoic acid
coupled to bovine serum albumin (2-OA-BSA), an anti-
gen selected following quantitative structure–activity re-
lationship analysis of PDC-E2. The immunization with
and without the addition of α-galactosylceramide (α-
GalCer), an invariant natural T-cell activator, leads to a
profound exacerbation of autoimmune cholangitis, in-
cluding significant increases in CD8+ T-cell infiltrates,
portal inflammation, granuloma formation and bile duct
damage [32]. This suggests a primary role of the innate
immune system in the exacerbation of autoimmune
cholangitis.
In addition to the above-mentioned models, several dietary

models leading to cholestatic liver injury have been intro-
duced. These agents include 3,5-diethoxycarbonyl-1,4-dihy-
drocollidine (DDC) or α-naphthylisothiocyanate (ANIT).
DDC feeding is widely used to study Mallory body

formation (as seen in alcoholic liver disease) or oval cell
activation and proliferation in murine models of liver in-
jury. Moreover, cholestatic serum markers are significantly
induced in these mice. Feeding mice a diet supplemented
with 0.1% DDC for 8 weeks leads to increased biliary por-
phyrin secretion. A strong ductular reaction can be ob-
served after one week. In epithelial biliary cells, the
expression of cytokines such as vascular cell adhesion
molecule, osteopontin and TNF-α is upregulated. Histo-
pathologically, oral DDC uptake leads to pericholangitis
with infiltration of inflammatory mononuclear cells and
activation of periductal myofibroblasts, causing biliary
liver fibrosis that resembles sclerosing cholangitis in
humans [33].
Feeding mice ANIT is another xenobiotic model to in-

duce cholestatic liver injury. In general, chronic biliary
injury and increase in the number of bile canaliculi can
be induced in mice by feeding them a diet supplemented
with ANIT in low doses (0.025%), which results in cho-
lestasis several days after feeding [34]. ANIT is conju-
gated with glutathione in hepatocytes and is transported
into the bile by the Mrp2 transporter [35]. Because
glutathione-conjugated ANIT is unstable in bile, it
undergoes recycling rounds of absorption and metabol-
ism, resulting in bile concentrations that cause direct bil-
iary epithelial cell injury. This injury causes reactive
expansion of the biliary epithelium, mild hepatocellular
injury and periportal inflammation, which lead to biliary
liver fibrosis [36]. Administration of a single large dose
of ANIT (300 mg/kg body weight) to mice leads to rapid
(15 to 24 hours) cholestasis induced by severe des-
truction of biliary epithelial cells and periportal hepato-
cellular necrosis [37]. Interestingly, similar intracellular
signalling pathways are involved in the mediation of ob-
structive cholestatic injury (that is, BDL) and ANIT-
induced injury. These pathways include the activation of
TGF-β and αVβ6 integrins [38,39].
All murine models of cholestatic liver fibrosis show

several characteristics leading to liver injury: direct dam-
age of the biliary epithelial cells induced by obstruction,
autoimmune processes or xenobiotic-triggered immune
responses leading to infiltration of mononuclear cells
and periductular inflammation. Depending on the study
aims, investigators should choose an injury model with
characteristics most suitable for the study objective. For
example, a BDL model can be used to study the effect of
cholestatic injury in transgenic mice. Models with genet-
ically induced biliary injury and strong autoimmune ef-
fects can give valuable information about inflammatory
cell migration and recruitment. Therefore, in addition to
carefully selecting the most suitable model for the study,
the interpretation of overlapping effects of cell injury in
those models is very important.

Toxic models
Several well-established chemical substances have been
identified that induce liver inflammation and fibrogenesis.
The most commonly used approach to induce toxin-
mediated experimental liver fibrosis is the periodic admin-
istration of carbon tetrachloride (CCl4) in mice or rats. In
mice, typically 0.5 to 2 ml/kg body weight CCl4 (diluted in
corn oil) is injected intraperitoneally (i.p.) two to three
times per week, resulting in robust and highly reprodu-
cible liver fibrosis between 4 and 6 weeks of treatment.
Long-term intoxication using inhalation is the standard
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method for the induction of cirrhosis with portal hyper-
tension. Oral gavage is an alternative application route
[40]. However, it was observed 40 years ago that oral CCl4
application is associated with frequent early mortality [41].
The susceptibility to CCl4-induced liver fibrosis in mice
depends largely on genetic background. BALB/c inbred
mice are most sensitive to fibrosis induction, whereas
FVB/N mice respond significantly less to CCl4 [42]. Al-
though C57BL/6 inbred mice develop only intermediate
liver fibrosis, this strain is frequently used for fibrosis stud-
ies in the CCl4 model because of the ready availability of
respective knockout mutants or other gene modifications.
CCl4 is metabolized by hepatocytes, giving rise to toxic
trichloromethyl (CCl3) radicals, which mediate cytotoxic
effects and eventually lead to massive centrilobular liver
necrosis [43]. In addition, some evidence exists that CCl4
may induce apoptotic cell death of hepatocytes [44], al-
though this might be a secondary effect and has not been
investigated in more detail to date.
The kinetics of fibrosis development can be roughly di-

vided into three phases: (1) acute injury, (2) initiation of
fibre formation and (3) advanced fibrosis. The phase of
acute CCl4-mediated liver fibrosis is characterized by acti-
vation of Kupffer cells and induction of an inflammatory
response, resulting in secretion of cytokines, chemokines
and other proinflammatory factors. This in turn attracts
and activates monocytes, neutrophils and lymphocytes,
which further contributes to liver necrosis [45] followed
by a strong regenerative response that results in substan-
tial proliferation of hepatocytes and nonparenchymal liver
cells at around 48 hours after the first CCl4 application
[46]. Thus, a single CCl4 injection in mice can also be used
as an attractive and highly reproducible model of liver re-
generation after toxic injury. The first appearance of histo-
logical fibrosis and scarring fibres is usually observed after
2 to 3 weeks of CCl4 treatment, depending on the dosage
and mouse strains used. Molecular fibrosis markers are
also easily detectable at this time. Accordingly, mouse mu-
tants that are expected to display accelerated onset of liver
fibrosis can be analysed after 2 weeks of continuous treat-
ment. True bridging fibrosis can be observed after 4 to 6
weeks of continuous treatment, corresponding to approxi-
mately 8 to 18 injections. Of note, CCl4-induced liver fi-
brosis in mice can be completely resolved within several
weeks after withdrawal of the toxic treatment [47,48].
Thus, the CCl4 model resembles all important properties
of human liver fibrosis, including inflammation, regener-
ation, fibre formation and potentially fibrosis regression.
Likewise, continuous administration of thioacetamide

(TAA) is another well-established model of experimental
liver fibrosis in rodents. It was originally established in rats
[49-51], but it is also frequently applied in mice and often
serves as a second, independent approach to confirm data
obtained from, for example, CCl4-treated animals. Although
known as a potent inducer of liver injury for decades, the
molecular mechanism of TAA-induced liver fibrosis is still
not completely understood. TAA is bioactivated in the
liver via oxidation processes leading to its S-oxide and the
highly reactive S,S-dioxide, which is presumably respon-
sible for TAA hepatotoxicity [52]. Earlier studies suggested
that TAA bioactivation involves the hepatic cytochrome
P450 enzyme CYP2E2 [53,54].
TAA can be administered i.p. at concentrations ranging

from 150 to 200 mg/kg body weight three times per week
[55,56] or given orally by adding 200 mg/L of TAA to the
drinking water [57]. I.p. application of TAA results in hep-
atic centrolobular necrosis, elevated transaminase activity
and robust liver fibrosis within 6 weeks. Interestingly, oral
administration of TAA does not lead to significant eleva-
tion of transaminases in mice [57], thus contributing to a
lower burden for experimental animals. In addition, this
scenario closely resembles the situation in hepatitis pa-
tients with only mild elevation of aspartate aminotransfer-
ase (AST) and alanine aminotransferase (ALT), but it still
has a high likelihood of leading to liver fibrosis. However,
oral administration of TAA requires a much longer appli-
cation to induce a similar strength of liver fibrosis in com-
parison to 6-week i.p. treatment with CCl4 or TAA. In
addition, the impact of oral application of toxins on the
gastrointestinal tract irritation that should be expected
was not analysed in detail in these studies.
Although much less frequently used in fibrosis re-

search, experimental liver fibrosis can also be induced by
regular administration of the hepatocarcinogen dimeth-
ylnitrosamine (DMN) [58]. Its mode of function is very
similar to that of diethylnitrosamine (DEN), which is de-
scribed in detail further below. It has been described that
i.p. injection of 10 mg/kg DMN twice weekly results in
liver fibrosis within 4 weeks, which was associated with
activation of hepatic stellate cells, Kupffer cells and ex-
pression of profibrotic cytokines [59], thereby defining
DMN as a probate drug capable of inducing prototypical
profibrotic mechanism. However, DMN also has strong
mutagenic and carcinogenic properties. Therefore, the
analysis of underlying profibrotic mechanisms in this ex-
perimental model could be more complex because of
overlapping or even mutated signalling pathways.
Most studies still rely on the CCl4-model to induce

toxic liver fibrosis in mice due to the good compara-
bility with the abundance of previous publications,
excellent reproducibility and moderate burden for the
animals. When administrating TAA, the application
mode should be carefully considered as i.p. application
results in strong injury (similar to CCl4), while oral
feeding mimics mild hepatitis reflecting e.g. alcoholic
liver disease. The DMN model is especially attractive, if
the progression from fibrosis to cancer is within the
focus of interest.
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Animal models of metabolic liver injury
Nonalcoholic fatty liver disease (NAFLD) eventually
leading to nonalcoholic steatohepatitis (NASH) is the
most common chronic liver disease entity worldwide
[60,61]. Although NAFLD describes the accumulation of
simple fat inclusion in liver cells, NASH is characterized
by an additional intralobular inflammation and hepatocel-
lular ballooning. This eventually leads to fibrotic remo-
delling of the liver with the final risk of hepatocellular
carcinoma (HCC) development. Pathogenetically, NASH
can be considered the hepatic manifestation of the meta-
bolic syndrome, which is defined by the appearance of
central obesity, insulin resistance, glucose intolerance and
dyslipidaemia [60,61].
The development of fatty liver diseases is rather com-

plex (Figure 3). Day and colleagues previously stated the
‘two-hit’ hypothesis, which is considered the current
model for NAFLD/NASH pathogenesis [62]. The first hit
describes the development of steatosis in the liver based
on an enhanced production rate of long-chain fatty acids,
its impaired elimination due to impaired hepatic mito-
chondrial β-oxidation, as well as enhanced synthesis and
secretion of triglycerides in hepatocytes. Furthermore, fail-
ure of synthesis of very low-density lipoprotein (VLDL)
accounts for the development of steatosis. Steatotic livers
are more sensitive to the induction of inflammation by a
second pathogenic ‘hit’. This postulated second hit could
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inflammatory response involving multiple cytokines
(TNF-α, IL-1β and IL-6) and an increase in TGF-β1 ex-
pression, HSCs become directly activated to produce
scar-forming collagen, and therefore liver fibrogenesis
develops. Additionally, free fatty acids induce the pro-
cessing and activation of caspase 1 in Kupffer cells and
hepatocytes, which promotes cleavage of IL-1 and there-
fore, ultimately, liver injury with a subsequent activation
of HSCs. Further collagen accumulation then maintains
the development of liver fibrosis, which can progress to
cirrhosis and end-stage liver disease, including HCC
development [68,69]. Although no animal model com-
pletely imitates the histology and pathophysiology of
human NASH, several adequate genetic and dietary
mouse models have been developed during the past few
decades. Herein we focus on three different dietary
models and one genetic model of NASH.
In the high-fat diet model of NASH, mice obtain 60%

to 71% of their energy intake from an animal chow with
special high-fat content, which is fed ad libitum. The re-
sults in this model may vary on the basis of the gender
and genetic background of the animals. Feeding male
mice a high-fat diet resulted in stronger hepatic lipid ac-
cumulation in Balb/C mice compared to C57BL/6J mice
[70]. High-fat dietary experiments in rats revealed the
development of steatohepatitis in Sprague-Dawley rats,
but not in Wistar rats [71,72]. Administration of a high-
fat diet results in enhanced plasma insulin levels, indi-
cating the development of insulin resistance, which is an
important attribute of the metabolic syndrome. Besides
panlobular steatosis and strongly enhanced hepatic lipid
content, increased transaminases and finally signs of hep-
atic inflammation and fibrosis were observed in rats after
4 weeks on a high-fat diet [71].
Almost 50 years ago, Lieber and DeCarli developed a

liquid diet containing alcohol in a nutritionally adequate
form for the study of alcohol-induced liver diseases [73].
However, this model induces only mild steatosis, slight
elevation of transaminases and little or no inflammation
in the absence of a secondary insult. Thus questions
remained regarding whether it could truly serve as a
model for the common problem of chronic alcohol in-
take and the subsequent development of liver diseases.
Therefore, the protocol has been modified to better meet
the needs of researchers interested in the investigation
of dietary liver injury [74,75].
Feeding mice with a methionine and choline-deficient

diet (MCD) leads to the development of steatosis and in-
flammation in the second week of treatment, which is
clearly more rapid compared to the high-fat diet model
[76,77]. The MCD diet contains 40% sucrose and 10%
fat. Methionine and choline play a major role in the syn-
thesis of phosphatidylcholine, which arranges the secre-
tion of hepatic triglycerides [78,79] and the transport of
VLDL out of the liver. With MCD chow, stearoyl-
coenzyme A desaturase 1 (SCD-1), which is a key en-
zyme in the synthesis of triglycerides, is downregulated
[80]. Oxidative stress, as determined by enhanced levels
of enzymes of the P450 cytochrome system, in particular
CYP2E1, and the improvement of steatohepatitis due to
increasing antioxidant capacities, as well as alterations in
cytokine and adipocytokine expression, also account for
progressive liver injury [81,82]. Together with depletion
of antioxidant factors such as glutathione, ROS promote
oxidative stress and induce steatohepatitis and enhanced
levels of TNF-α. An MCD diet induces stronger ROS
production, mitochondrial DNA damage and apoptotic
cell death compared to other dietary mouse models and
is therefore one of the best-established model for
NASH-associated inflammation. However, it also has
some disadvantages. The amount of liver injury due to
an MCD diet differs between mice and rats as well as
between strains. A detailed comparative analysis of fe-
male 8- to 10-week-old mice from seven different inbred
strains (A/J, AKR/J, Balb/cJ, C57BL/6J, DBA/2J, C3H/
HeJ and 129X1/SvJwT), for example, revealed that the
different mice showed an overall variation in regard to
ALT, liver weight and liver fibrosis when fed an MCD
diet [83]. Similar results were more recently reported in
a study that compared chemokine (C-C motif ) ligand 2
(Ccl2)-deficient mice on two different genetic back-
grounds (that is, Balb/C and C57BL/6J) [84].
In addition, it is known that males develop stronger

NASH attributes while showing less steatosis [85]. The
most severe disadvantage is that the metabolic profile of
the MCD model does not completely reflect all proper-
ties of NASH in humans. For instance, an MCD diet
leads to particular weight loss of the animal in line with
decreased plasma triglyceride and cholesterol levels. Be-
sides serum insulin, leptin and glucose levels are reduced
and adiponectin levels are unchanged or increased [81,86].
Strikingly little or no insulin resistance is present in this
model [87].
The administration of a solely choline-deficient (CD)

diet is an alternative for the induction of NASH. Cho-
line, as described above, is important for degradation of
VLDL and the secretion of triglycerides. A CD diet in-
duces steatosis, inflammation and fibrosis over a period
of 10 weeks. These mice exhibit no difference in body
weight compared to the control group, which stands in
clear contrast to mice fed an MCD diet [88]. In contrast,
mice fed a CD diet were insulin-resistant and had higher
plasma lipids compared to the MCD group, which, in
contrast, had stronger steatosis and inflammation [89]. A
CD diet supplemented with ethionine was then introduced
as a model for stronger NASH development (referred to
as the CDE model). The antimetabolite ethionine is a me-
thionine antagonist and is usually provided in drinking
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water. However, this additionally hampers hepatocyte pro-
liferation, making it a useful model for the study of hepatic
progenitor cells [90].
Other alternatives for reproducing NASH in animals

are genetically altered mouse models. One of the most
widely used genetic NASH animal models is the ob/ob
(ob = obese) mouse lacking functional leptin. Of note,
leptin is an adipose tissue–derived hormone. These mice
become extremely obese, hyperphagic, inactive and
insulin-resistant, and they exhibit hyperglycaemia to-
gether with hyperinsulinemia and eventually develop
hepatic steatosis [91]. Thus, within these mice, charac-
teristic metabolic malfunctions clearly reflect NAFLD.
However, this does not progress to steatohepatitis spon-
taneously. Additional stimuli such as an MCD or high-
fat diet are therefore required [92,93]. Interestingly,
these mice are resistant to fibrosis, even when treated
with CCl4 or TAA, suggesting a crucial role of leptin in
hepatic fibrogenesis [86,94,95].
Taken together, NASH development is the result of a

complex sequence of metabolic, inflammatory and struc-
tural changes affecting liver physiology and function.
Dietary models and genetic modified animals can be
used to mimic changes appearing in human NAFLD and
NASH, although none of these disease models com-
pletely reflects the disease development in its entire as-
pect. Therefore, the decision for or against a certain
model should always be based on the particular aspect
that is the focus of the study. This implies that different
NASH models should be analysed in parallel to exclude
experimental pitfalls.

General aspects of liver fibrosis in animal models
Immunological mechanisms of fibrosis
Inflammation is found in virtually all types of liver disease,
and it has been recognized that persistent inflammation is
the key driver of progressive liver disease, characterized by
hepatitis, fibrogenesis, cirrhosis and hepatocellular carcin-
oma [96]. The immune reaction in the injured liver is a
highly regulated process involving the activation of resi-
dent hepatic immune cells, such as Kupffer cells, massive
infiltration of a variety of different immune effector cells,
such as monocytes and lymphocytes, as well as direct and
indirect interactions (for example, via cytokines or growth
factors) of parenchymal and nonparenchymal liver cells
with immune cells (Figure 4) [15]. In principle, two types
of initiation of immune responses can be distinguished. In
immune-initiated human liver diseases such as auto-
immune hepatitis, some types of drug-induced injury and
hepatitis B virus infection, activation of the immune sys-
tem, including the adaptive part of immunity, directly pro-
motes hepatotoxicity [97]. In all other cases, such as
nonalcoholic or alcoholic steatohepatitis, classical drug
hepatotoxicity or most cholestatic diseases, the injured
liver (for example, necrotic or apoptotic hepatocytes) pro-
vokes the inflammatory reaction, largely involving innate
immune mechanisms [96]. Of course, these initiation path-
ways are not mutually exclusive, and, at advanced disease
stages, persistent injury and persistent inflammation are
too closely linked to distinguish cause and consequence.
From an immunological point of view, the classical

mouse models of liver injury mimic quite well the different
immunological aspects of liver disease. For instance,
immune-mediated initiation is responsible for liver dam-
age upon Concanavalin A injection into mice [98], but also
in new models for autoimmune hepatitis, in which
hepatocyte-specific expression of antigens and antigen-
directed T- and B-cell responses are achieved [99,100]. In
contrast, classical murine or rat fibrosis models, such as
CCl4 administration, surgical BDL and a steatohepatitis-
inducing MCD diet, reliably provoke a defined inflamma-
tory response within the injured liver [101].
A recent study reporting the lack of analogous gene

array variations between human disease samples and
mouse models of three major inflammatory conditions––
sepsis, burns and trauma––has raised concerns regarding
the reliability of mouse models in general for immuno-
logical research in defined disease models [102]. In fact, in
studies using liver fibrosis models, several differences be-
tween murine and human immune cells in the liver need
to be carefully considered, such as the different number
and proportion of distinct immune cell populations in the
liver between mice and humans and the different marker
molecules to identify corresponding immune cell subsets
between mice and humans [93]. For instance, the propor-
tion of unconventional γδ T cells is lower in human liver
than in mouse liver [103], the human neutrophil-
attracting chemokine IL-8 has no direct analogue in mice
(which employs CXCL1 to attract neutrophils) [104] and
subsets of circulating classical and nonclassical monocytes
show very different ratios in humans (90%:10%) and mice
(50%:50%) [105]. Moreover, the genetic background of in-
bred mouse strains largely influences the responsiveness
of their immune systems to specific stimuli (for example,
rather Th1- or Th2-driven T-cell reactions), leading to dif-
ferent fibrogenic responses in standard mouse models of
liver fibrosis, depending on the mouse strain [84,106].
Nevertheless, taking all these potential shortcomings

into account, mouse models have been of outstanding
value in detecting immunological reactions during hepato-
fibrogenesis. For instance, the strong increase of chemo-
kine receptor CCR2 expression has been observed in
human fibrotic liver samples for a very long time
[107,108], but its functional relevance has remained ob-
scure. Various mouse models of liver fibrosis conducted in
independent laboratories revealed the CCR2-dependent
accumulation of a distinct profibrogenic monocyte subset
in acute and chronic liver injury [84,109-112]. The Ly-6C+



Figure 4 Representative example of the complexity of the chemokine network regulating immune mechanisms during liver fibrosis.
Sophisticated experimental mouse models of chronic injury and fibrosis revealed the complex interplay of different hepatic cells and monocytes/
macrophages during hepatofibrogenesis. Injury to the liver induces the expression and release of various chemokines (for example, chemokine
(C-C motif) ligand 2 (CCL2), CCL1 and chemokine (C-X3-C motif) ligand 1 (CX3CL1)) from different hepatic cell subpopulations (for example,
hepatocytes, sinusoidal endothelial cells, hepatic stellate cells (HSCs)). These chemokines potently chemoattract inflammatory Ly-6C-expressing
monocytes from the circulation. As a consequence, these cells infiltrate the liver parenchyma, and monocytes differentiate into distinct
macrophage subsets. Macrophages are a source of profibrogenic transforming growth factor β (TGF-β) that triggers transdifferentiation of HSCs
into myofibroblasts (MFBs) responsible for excessive matrix formation and deposition (for example, collagen). On the other hand, macrophages
also produce inflammatory cytokines (for example, tumour necrosis factor α (TNF-α), interleukin 1β (IL-1β) and IL-6) that altogether drive
apoptosis and steatosis of parenchymal cells (that is, hepatocytes). ECM, extracellular matrix.
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(Gr1+) monocytes in mice release proinflammatory (for ex-
ample, TNF-α) and profibrogenic (for example, TGF-β) cy-
tokines and can also directly activate collagen-producing
stellate cells, thus representing a key mechanism for
linking perpetuation of inflammation to development and
progression of fibrosis [106]. This in turn prompted intense
research in human fibrosis and led to the discovery of
monocyte/macrophage subsets in human liver, assigning
proinflammatory and profibrogenic functions to the
subset of CD14+CD162+ nonclassical or intermediate
macrophages [113,114]. Therapeutic interventions based
on these findings, such as inhibition of the chemokine
CCL2 or transfer of beneficial macrophage subsets, are
currently being evaluated in animal models as well as in
early-phase clinical trials [109,115,116].
Another advantage of animal models is that they are

useful for the study of cell–cell interactions in the context
of the organ-specific microenvironment. For instance, it
has been noted that in vitro activated, cultured HSCs
largely differ in their gene array profiles from in vivo acti-
vated HSCs [117]. This discrepancy was reduced when
HSCs were cocultured with hepatic macrophages [117],
prompting subsequent in vivo studies in mice that
revealed an intimate cross-talk between HSCs and macro-
phages [118]. This principal finding was later confirmed in
primary human HSCs and macrophages and was even
assigned to distinct cellular subsets [113,115].
Besides a central role of monocytes/macrophages as

key initiators and perpetuators in the progression of liver
fibrosis, the liver (both mouse and human) is highly
enriched by unconventional lymphocytes, including nat-
ural killer (NK) cells, NK T (NKT) cells and γδ T-cell re-
ceptor–expressing T cells. In conditions of chronic liver
injury, T cells also represent a major lymphocyte compo-
nent of the inflammatory infiltrate [15]. In many cases,
human studies have described the presence and allowed
phenotypic characterization of the different cell types,
whereas mouse models have been invaluable in defining
the functional contribution of these cells. For instance,
NK cells are capable of promoting HSC apoptosis and
are thus considered antifibrotic in murine and human fi-
brosis [119,120]. CD8 T cells, on the other hand, induce
liver fibrosis by activating HSCs [121], and CCR7 has
been associated with infiltration of CD8 T cells [122].
The chemokine receptors CCR5 and CXCR3 have been
described as being involved in CD4 T-cell recruitment
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to the liver in mice and humans [123-126]. Among the
CD4 T-cell populations, IL-17–expressing Th17 cells have
gained much interest in fibrosis research because they are
thought to exert important proinflammatory and pro-
fibrogenic actions in humans and mice [127-129].
Taken together, acute or chronic injury to the liver

provokes the highly regulated and controlled activation
of distinct immune cells from the innate and adaptive
immunity, which critically initiate and perpetuate in-
flammation and promote fibrogenesis. The thorough dis-
section of immune cell–related functions from animal
models has provided profound insights into the patho-
genesis of liver fibrosis, and translational studies have
confirmed the relevance of findings derived from mouse
and rat models for human liver diseases. The tremen-
dous advances in deciphering immunological mecha-
nisms in liver fibrosis in mouse models and human
samples gives rise to the expectation that these pathways
will translate into novel therapeutic approaches for hep-
atic fibrosis in the near future.

Targeting specific cells involved in fibrogenesis
As outlined above, liver fibrogenesis involves activation
and interaction of several hepatic cell types upon the
chronic injury of which the most prominent are HSCs,
hepatocytes, Kupffer cells and monocytes. Thus, targeted
manipulation of each of these cell types could be of great
benefit for the treatment of liver fibrosis. In addition, cell
type–specific deletion or overexpression of pro- and
antifibrotic genes is still a major goal of basic fibrosis re-
search. This aim has been facilitated by the implementa-
tion of the Cre/loxP recombination system in mice and
the characterization of powerful cell type–specific pro-
moters driving Cre-mediated gene deletion exclusively in
the target cell of interest [130]. Regarding the liver, most
advances have been made by deleting target genes in he-
patocytes. Transgenic expression of Cre recombinase
under the control of the albumin promoter/α-fetopro-
tein enhancer (Alfp-Cre) is well-established and allows
deletion of loxP-flanked target genes in hepatocytes with
efficiencies of 95% and higher [131,132].
Targeting HSCs is presumably more relevant for devel-

opment of therapeutic approaches, as these cells are the
major source of ECM in the liver, especially during
fibrogenesis [6]. Therefore, current approaches aim to
express Cre recombinase specifically in HSCs. Several
recent reports have demonstrated that the promoter of
glial fibrillary acidic protein (GFAP), which is activated
in resting HSCs and astrocytes, is able to drive Cre-me-
diated target gene deletion (GFAP-Cre) in HSCs, but not
in other hepatic cell types. This approach was suc-
cessfully used to track hepatic stellate cells in vivo by
Cre-mediated reporter gene activation (for example, en-
hanced green fluorescent protein, EGFP) under control
of the GFAP promoter [22]. In other recent studies,
GFAP-Cre–transgenic mice were successfully used to
study the role of autophagy and senescence in HSCs
during fibrosis progression. GFAP-Cre–driven deletion
of autophagy-related protein 7 (ATG7) in hepatic stellate
cells in mice following CCl4 or TAA treatment reduced
matrix accumulation and liver fibrogenesis [133]. To in-
vestigate the role of HSC senescence for fibrosis progres-
sion, the tumour suppressor p53 was selectively deleted
in HSCs using GFAP-Cre mice, which prevented cellular
senescence, enhanced liver fibrogenesis and unexpect-
edly triggered non–cell autonomous tumour-promoting
mechanisms in macrophages [134].
Additional strategies have been developed to induce Cre

expression specifically in activated, collagen-producing
HSCs, even in an inducible manner. A very recent study
described the sophisticated generation of a Cre transgene
in mice, which was fused to a mutant oestrogen ligand-
binding domain and controlled by the murine vimentin
promoter [135]. As a consequence, Cre expression in the
respective mice requires the presence of tamoxifen (an
oestrogen receptor antagonist) and also of vimentin,
which is predominantly expressed in myofibroblast-like
cells such as activated HSCs [135]. Accordingly, adminis-
tration of tamoxifen at a desired time point allows Cre-
mediated deletion of target genes or activation of reporter
genes specifically in activated stellate cells. However, the
potential weaknesses and virtues of this strategy have to
be evaluated in future studies.
Kupffer cells and monocytes are important for the pro-

gression of liver inflammation and fibrosis [136]. Although
Kupffer cells represent the population of resident macro-
phages within the liver, monocytes are recruited to the
liver upon specific trigger and can be considered the circu-
lating precursors of tissue macrophages and dendritic
cells. Genetic targeting of profibrotic genes in these two
cell populations could be of high value for understanding
cellular cross-talk during liver fibrosis. Surprisingly, very
few studies to date have aimed to target genes specifically
in Kupffer cells/monocytes in experimental liver fibrosis.
The generation of mice expressing Cre in the myeloid
lineage under control of the murine M lysozyme locus
was described more than one decade ago [137]. In these
mice, Cre recombinase is expressed in monocytes, macro-
phages and neutrophils, but with some variation. However,
few studies have used this approach for analysis in experi-
mental fibrosis [138,139]. Similarly, transgenic mice with
Cre expression in resident macrophages under control of
the F4/80 promoter were described in a 2002 study [140].
Of note, the F4/80 molecule is a cell surface glycoprotein
expressed at high levels on the surface of several resident
macrophages, including Kupffer cells in the liver [140],
but only one study published to date [139] has described
the use of this strain for a liver-specific analysis.
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Several tools and transgenic mice are available for cell
type–specific targeting of fibrosis-relevant cells. Targeting
includes genetic labelling of cell types or cell type–specific
deletion of pro- and antifibrotic genes. Although tools for
targeting hepatocytes and HSCs are well-developed and
have been improved, the literature on genetic targeting of
monocytes/macrophages in the fibrogenic liver is still lim-
ited, presumably due to a lack of efficient, cell-type–spe-
cific, Cre-transgenic mice.
Drug-targeting and the development of specific delivery

systems to the liver have recently become a very important
focus in fibrosis research. At present, no effective pharma-
cological intervention is available to treat human liver fi-
brosis. Although current advances in genetic targeting of
specific cell populations have greatly contributed to the
identification of genes, cells and mechanisms involved in
liver fibrogenesis, these strategies are barely applicable for
human therapy, but they do help to define suitable thera-
peutic targets. It has been widely accepted that HSCs play
a critical role in liver fibrogenesis, as they are the main
source of fibrotic ECM. Thus, drug-mediated targeting of
profibrotic factors in HSCs is a major goal of current re-
search, as reviewed in detail recently [141-143]. Herein
two examples of promising drug-targeting strategies in
HSCs will be introduced in more detail.
Activated HSCs show increased expression of the

mannose 6-phosphate/insulin-like growth factor II
receptor (M6P/IGF2R). It was previously shown that
human serum albumin modified with mannose 6-
phosphate specifically binds to M6P/IGF2R on acti-
vated but not on quiescent HSCs and gets effectively
internalized, suggesting that mannose 6-phosphate
substituted proteins are promising HSC-selective car-
riers for antifibrotic drugs [144]. This strategy was re-
cently applied in a translational approach in rats [145].
Rho kinase is involved in enhanced portal pressure dur-
ing liver cirrhosis. Using a Rho kinase inhibitor coupled
to a mannose 6-phosphate/human serum albumin car-
rier, fibrosis progression, and especially portal pressure,
could be substantially reduced without major systemic
effects. Another promising approach took advantage
of strong expression of the platelet-derived growth factor
β receptor (PDGFβR) in activated HSCs [146]. In this
study, IFN-γ, a cytokine with proven antifibrotic proper-
ties, was conjugated to a PDGFβR-specific carrier and ad-
ministered to human HSCs and CCl4-treated mice [147].
In cells, conjugated IFN-γ showed PDGFβR-specific bind-
ing and full bioactivity, whereas drug delivery to mice
revealed inhibition of profibrotic genes and reduction of
hepatic fibrogenesis.
Current advances in HSC-specific drug delivery are

promising. However, comprehensive further analyses in
animal models will be necessary to identify the best-suited
drug target and most optimal delivery strategies with
minimal side effects before studies in patients with liver fi-
brosis are feasible.

Complications of fibrosis in animal models
Portal hypertension
Portal hypertension is one major complication occurring
in human liver disease and in animal models of fibrosis.
Portal hypertension is defined as the gradient between
the portal pressure and hepatic venous (or central ven-
ous) pressure above 5 mmHg, as well as in human and
animal models [148,149]. The main reason is a patho-
logically elevated intrahepatic resistance to portal blood
flow due to fibrosis or cirrhosis caused by different
chronic, mainly inflammatory, stimuli [148,150]. The site
of the increased resistance may be prehepatic (portal
vein obstruction) or posthepatic (hepatic vein obstruc-
tion). These mainly vascular forms are not within the
scope of this review and have been discussed elsewhere
[151,152]. There are two steps that are decisive and have
the potential for cure: early interruption of liver damage
and liver transplantation [153,154].
Otherwise, different noncurative strategies are available

for the treatment of chronic liver disease. Most of these
target portal hypertension [154]. By contrast, interruption
or regression of fibrosis is much more difficult to achieve
[153]. Therefore, research in this field is urgently needed,
requiring appropriate animal models.
To develop new treatment strategies, understanding of

the involved pathophysiological phenomena is pivotal. On
the one hand, hepatic resistance is increased due to me-
chanical obstruction within the sinusoidal flow caused by
fibrosis derived from inflammation and/or hepatocellular
injury, and, on the other hand, contraction of myo-
fibroblastic cells (portal myofibroblasts and activated
HSCs) and smooth muscle cells contributes actively to
intrahepatic obstruction [150,155]. The resulting portal
pressure increase is associated with vasodilatation in the
splanchnic bed and consecutive splanchnic hyperperfusion
[156]. Besides this vasodilation, neoangiogenesis takes
place, supporting formation of collaterals and shunts
[157]. In parallel, a hyperdynamic circulation occurs with
increased cardiac output, a situation seen quite consist-
ently in humans, mice and rats with liver cirrhosis and
portal hypertension [156]. Secondary to this, renal perfu-
sion is often compromised, which results in sodium reten-
tion and ascites formation. Most of these pathogenetic
features can be found in preclinical animal models of por-
tal hypertension [148,158-160].
Animal models used to study portal hypertension and

liver cirrhosis mainly comprise rats, rabbits and, less often,
mice. The main reason is that haemodynamic measure-
ments, for example, of portal pressure or systemic circula-
tory parameters, are easier in these larger animals, with
higher reproducibility and reduced latency. However, mice
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offer the opportunity for genetic modification and
therefore are indispensable for future research in portal
hypertension, despite the drawbacks described else-
where [151,152,155].
As outlined above, widely applied models for the in-

duction of liver injury include bile duct ligation, CCl4 in-
toxication and application of TAA or DMN. In this
section, we selectively refer to the specific characteristics
of these treatments regarding portal hypertension during
progressive fibrosis.
The BDL model induces mainly cholangiocyte prolifer-

ation with consecutive formation of peribiliary plexus
and portal fibrosis, leading to portal hypertension and
shunts within four to six weeks [161-163]. The animals
show clear signs of portal hypertension with ascites,
splenomegaly and splanchnic and systemic vasodilation,
which are associated with decreased arterial pressure as
well as intra- and extrahepatic angiogenesis [161]. In
contrast to humans, the renal perfusion in BDL rats is
increased, despite decreased creatinine and sodium ex-
cretion [158,159]. The main advantages of this model
are technical feasibility, short time to achieve typical dis-
ease, reproducibility and high similarity with humans in
terms of portal hypertension. One of the drawbacks in
rats and mice is the development of a biliary cyst
compressing the portal vein and the stomach. Setting
the ligation far within the hilum or injecting Ethibloc or
formalin into the bile duct prior ligation prevents this
problem [164-166].
The CCl4 model of liver injury is used in mice, rabbits

and rats and leads to cirrhosis with portal hypertension
[40,149,151,167-169]. In rats, the routine technique to
achieve portal hypertension is inhalation using different
protocols until ascites is present as an unequivocal sign
of portal hypertension. One study investigated different
protocols of CCl4 administration in mice (subcutaneous,
i.p. and different protocols of inhalation), showing the
best results with regard to mortality and degree of portal
hypertension in short-cycle, thrice-weekly inhalation [40].
As an unwanted complication, all the inhalation groups
developed significantly more ascites than those receiving
CCl4 subcutaneously and i.p. [40]. Compared to the BDL
model, the CCl4 model shows portal hypertension of simi-
lar dimension, whereas systemic haemodynamic alter-
ations are more moderate [149,170]. Of note, generation
of ascites and related portal hypertension takes appro-
ximately 12 to 16 weeks of treatment, and cirrhosis to-
gether with ascites rapidly regresses within 7 to 10 days
after withdrawal of CCl4 [40,169,171].
Portal hypertension is also a consequence of TAA

treatment in experimental models performed in rats and
mice [172,173]. The toxin affects both the perivenular
and periportal areas. The induction of cirrhosis with se-
vere portal hypertension using TAA usually takes longer
than CCl4 application (14 to 20 weeks), with lower inci-
dence of ascites [173,174]. Once TAA-induced cirrhosis
is established, it remains stable for several weeks even if
TAA is withdrawn, which is a major advantage of this
model. A weakness of this model, apart from the time-
consuming procedure, is the fact that animals develop
cholangiocarcinoma around 18 weeks after TAA intoxi-
cation [175].
DMN administration induces centrilobular hepatocel-

lular necrosis. The chronic intoxication with DMN, usu-
ally as an i.p. application, leads to cirrhosis with ascites
(the most reliable sign for established portal hyperten-
sion) in rats after around 13 weeks [58,176]. The draw-
back of this model is its high carcinogenic potential for
animals; therefore, in our view, it is not a preferable
model for fibrosis with portal hypertension.
NAFLD might progress to end-stage liver disease and

portal hypertension as well [176,177]. Specific diets (for
example, MCD or low protein and choline and enriched
with fat) are used to induce liver steatosis and fibrosis in
rats (see discussion above). After feeding for 12 to 24
weeks, these animals may develop cirrhosis with portal
hypertension. These models are rarely used for induction
of portal hypertension because the haemodynamics of
these animals has not been properly characterized to date.

Animal models of hepatocellular carcinoma
HCC represents the most common primary carcinoma
of the liver [178]. It arises almost exclusively in a setting
of chronic inflammation and subsequent liver fibrosis
caused by a variety of pathogenic entities, such as viral
hepatitis, fatty liver disease, chronic alcohol consump-
tion and others [179]. The worldwide spread of viral
hepatitis in the past, and in increasing numbers of patients
with metabolic liver disease in Western industrialized
countries, has resulted in a steep rise in HCC incidence in
recent decades. Consequently, HCC is the third-leading
cause of cancer-related death worldwide [180]. At present,
therapeutic options against HCC are still limited. Al-
though the multikinase inhibitor sorafenib (Nexavar; Onyx
Pharmaceuticals, South San Francisco, CA, USA) repre-
sented the first systemic treatment with a significant sur-
vival benefit for HCC patients in a palliative setting [181],
further large clinical trials evaluating new drugs with mo-
lecular targets similar to those of sorafenib recently failed
[182], illustrating the urgent need for the evaluation of
novel molecular targets to prevent and treat HCC.
To gain better functional insight into the molecular

mechanisms of hepatocarcinogenesis, multiple studies
were performed using human HCC tissue. On the basis
of these studies, a collection of genetic and epigenetic al-
terations, chromosomal aberrations, gene mutations and
altered molecular pathways were described [183]. How-
ever, in many cases, it was difficult to assess whether
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these alterations represented a correlative epiphenom-
enon or if they were causally linked to HCC pathogen-
esis. In the light of these aspects, animal models of HCC
offer a unique possibility to study mechanistic and cellu-
lar aspects of tumour biology, including the genetics of
tumour initiation and promotion, tumour progression
and metastasis in vivo. Moreover, animal models also
represent a valuable tool with which to prescreen various
therapeutic compounds for their efficacy to inhibit par-
ticular signalling pathways and thus to prevent or decel-
erate HCC development and growth [184].
There are numerous mouse models available for HCC

research, which can be broadly divided into (1) xenograft
models, (2) chemically induced models and (3) genetic-
ally modified mouse models [45]. Whereas, tumours are
formed by injecting human cancer cells into immune-
deficient mice in xenograft models, HCC in chemically
induced and genetic models arise in their natural cellular
and intercellular context, allowing researchers to study
molecular mechanisms and cellular interactions during
tumour initiation. Thus these models are used much
more frequently today. Therefore, exemplary chemically
induced and genetic models are briefly introduced and
discussed next.
DEN is most often used as a carcinogenic agent to in-

duce cancer in the liver and is frequently applied as a
single-dose i.p. injection [184]. The carcinogenic effect is
due to its capability of alkylating DNA structures, com-
prising a two-step bioactivation process [185]. Initially, the
DEN model was often used as a two-stage model in which
initiation by DEN was followed by a promotion phase,
with phenobarbital used as a promoting agent [186]. How-
ever, depending on the dose and time point of injection, a
single injection of DEN can induce HCC after a period of
latency. As such, injection of DEN at a dose of 25 mg/kg
at day 18 into C57BL/6 mice results in liver tumour de-
velopment at the age of 8 months. For the initiation-
promotion model, 4-week-old mice are typically injected
i.p. with 100 mg/kg DEN and, after an additional 4 weeks,
receive 0.07% phenobarbital in drinking water, resulting in
HCC development after 6 months.
Genetically, the DEN model resembles human HCC

associated with a poor prognosis [187]. As stated above,
it is the most widely used tumour model and has several
advantages. (1) It can be easily administered to mice
from different genotypes. (2) It has a high HCC inci-
dence. (3) It is highly reproducible [45,188,189]. It has
been widely used to study the role of inflammatory and
stress-related signalling pathways in the initiation and
promotion of liver cancer [190-192]. Importantly, this
model is extremely well-tolerated by mice and is not as-
sociated with serious side effects. DEN treatment itself is
not linked with an impact on survival within the first 12
months after treatment [193], showing that the hepatic
tumour burden induced by this treatment does not
affect overall liver function as is true in most other pri-
mary liver tumour models in mice. Recently, the proto-
col for DEN administration was optimized by the group
of Schwabe: HCCs were induced in C3H/HeOuJ and
C3H/HeJ mice by i.p. injection of DEN (100 mg/kg) at
ages 6 to 14 weeks, followed by 6 to 12 biweekly injec-
tions of CCl4 (0.5 ml/kg i.p. dissolved in corn oil) [194].
By this modification, the authors demonstrated that the
processes occur in the natural course of human liver dis-
ease––chronic hepatitis leading to liver fibrosis as the
basis of liver cancer–could be even more closely mim-
icked. Again, the authors did not report any increased
mortality of mice within the observation period or an in-
creased rate of peritoneal or other infections [194].
In contrast to the DEN model, the Mdr2-knockout

mouse (Mdr2−/−) represents a bona fide genetic liver
tumour model. These animals lack a biliary transporter
protein denoted as multidrug resistance gene 2 (mdr2),
which prevents spontaneous cholestatic hepatitis and
liver cancer [27]. Tumour development in these mice
progresses through distinct phases: inflammation, hepatic
fibrosis, dysplasia, dysplastic nodules and carcinomas, thus
mimicking the formation of HCC in humans [195]. Re-
cently, other genetic tumour models with similar se-
quences of disease progression have been described, such
as conditional liver-cell–specific knockout mice of
the TNF-dependent signalling genes Nemo and Tak1
[196,197] or mice with hepatocyte-specific overex-
pression of the proinflammatory cytokine lymphotoxin
[198]. All these tumour models have common features.
As such, HCCs are mainly characterised by their histo-
logical features and rarely metastasize [184]. Moreover,
genetic profiling and functional studies have revealed
similar transcriptional profiles and molecular behaviour
with regard to proinflammatory signalling pathways, as
seen in human liver cancer [191]. None of these respective
studies described a significant influence of the hepatic
tumour load on liver functional parameters or the behav-
iour of mice compared to their littermates that did not
carry the carcinogenic mutation [195,196,198].
Taken together, murine HCC models offer the unique

chance to study the role of intracellular molecular path-
ways and immunological processes in the critical steps
leading from chronic hepatic inflammation to liver fibro-
sis and liver cancer. These models have been newly char-
acterized and optimized in recent years to better mimic
the typical disease sequence seen in human patients with
chronic liver disease. Moreover, these models are very
well-tolerated and barely limit life expectancy or change
the behaviour of mice during the typical observation pe-
riods. On the basis of the currently limited treatment op-
tions for liver cancer, these models are essential to identify
novel targets for future drug-targeting approaches that
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might help to reduce the global challenges associated with
this disease.

Considerations and perspectives
Ethical and legal issues in performing animal
experimentation
During the past few decades, the public’s consciousness
regarding animal welfare, especially in Europe, has dra-
matically changed. As a consequence of the debates sur-
rounding this issue, within the year 2013, all member
states of the European Union (EU) have to incorporate
into their national laws the criteria of EU-Directive
2010/63 on the protection of animals used for scientific
purposes.
This directive contains 66 articles and lays down rules

for protection of nonhuman primates, animals taken
from the wild, stray and feral animals of domestic spe-
cies and animals bred for use for invasive or noninvasive
animal experimentation or other scientific purposes (that
is, so-called procedures) [199]. This implementation will
foster the status of the 3R principle (reduction, refine-
ment and reduction) set forth by Russel and Burch [18].
As a consequence, this law will enforce the 3R principle
in animal experiments.
In particular, member states of the EU shall ensure

that, wherever possible, a scientifically satisfactory me-
thod or testing strategy not entailing the use of live
animals shall be used instead of a procedure [199].
Moreover, the directive requires that all procedures are
classified in the future as ‘nonrecovery’, ‘mild’, ‘moderate’
or ‘severe’ and that all personnel who carry out experi-
ments on animals have an adequate education. There is
no doubt that these new laws will protect animals. It is
also obvious, however, that there are no strict classifica-
tion criteria for pain. Small variations in animal housing,
anaesthesia, setting of experimental damage (for example,
BDL) might further affect animal discomfort. In addition,
time required for documentation, training of personnel
and state monitoring will increase enormously. Moreover,
because each laboratory has potentially susceptible and
nonsusceptible variations in experimental protocols, it is
obvious that strict guidelines and standard operating pro-
cedures for each disease model are required.
Within our Collaborative Research Centre SFB TRR57,

Organ Fibrosis: From Mechanisms of Injury to Modula-
tion of Disease, different models for the induction of organ
fibrosis in rodents (mice and rats) are used in a highly
standardized manner (for details about the aim of the SFB
TRR57, see http://www.sfbtrr57.rwth-aachen.de/). To in-
vestigate different molecular mechanism and pathways in-
volved in fibrogenesis, we apply methods in which the
pathophysiology is induced via special diets (for example,
CD and MCD), cholestasis (BDL), application of toxins
(CCl4, DMN and DEN) or genetic modification of
embryonic stem cells and the development of genetic-
ally modified organisms. In our consortium, we have
strict, highly standardized protocols for each procedure.
However, we are still aware of the fact that these stand-
ard operating procedures may potentially have to be
adjusted to other consortia and the international com-
parability reviewed.
For this purpose and to foster meta-analysis according

to standards comparable to evidence-based medicine,
the Animals in Research: Reporting In Vivo Experiments
(ARRIVE) guidelines that were originally published in
2010 [200] are, in our view, most suitable.
The aim of these consensus guidelines is to report ani-

mal studies in a systematic form to improve the ability
for later analysis and to improve the reproducibility of
experiments. Therefore, the ARRIVE guidelines are a
useful refinement tool, but the scientific community has
to foster refinement and reduction on its own. This can
be done by avoiding unnecessary variations and applying
state-of-the-art knowledge. The outcome of a particular
diet is, for example, dependent on the genetic back-
ground of the mice [84] as well as on the different time
intervals when the diet is used [201].
Most animal welfare standards in the new EU directive

are similar to those prevailing in the United States.
However, several of the new EU directive legal require-
ments exceed U.S. practice. It would be a great ad-
vantage if all details of animal experimentation were
reported rigorously in related scientific publications. Ref-
erees of peer-reviewed journals should be aware of the
fact that the request for additional animal experimenta-
tion will need additional approval by legal institutions
and therefore will be more time-intensive in the future.
Another ethically important consideration mandated

by the EU directive is the consideration and implemen-
tation of humane endpoints. No experiment should have
as the only readout the death of the animal without any
intervention, analgesia or the definition of a human end-
point termination of the experiment. Again, different di-
ets also can have an impact ranging from moderate to
severe lasting harm, and a generally accepted objective
humane endpoint that were previously widely used in
various experimental animal models is loss in body
weight [202-206]. With this objective parameter, it is
possible to define a scientific and human endpoint that
is clear, measurable and objective [204]. However, in
most of the experimental procedures, more than one hu-
man endpoint should be used to have a solid decision
basis, and score sheets for each animals subjected to ex-
perimentation are useful to monitor the health-related
status of the individual animals and the criteria for when to
stop the experiment to avoid unnecessary pain, distress or
harm. Moreover, the burgeoning use of genetically modified
animals that we and others have used in our experiments

http://www.sfbtrr57.rwth-aachen.de/
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might be another challenging task in establishing new
forms of harm reduction through improved genetic modi-
fication technologies, plus continued attention to alterna-
tive approaches and cost–benefit analyses that include the
large numbers of animals involved indirectly (for more
critical discussion, see [207]).
The new animal welfare rules will change liver fibro-

sis research, at least in Europe. This change will include
the establishment of highly standardized standard ope-
rating procedures, thereby increasing the reproducibil-
ity and comparability of results obtained from different
laboratories.

Translation of experimental findings from rodents
to patients
As outlined above, animal models are still the gold
standard for basic liver fibrosis research, especially due
to the complex interaction of several cell types (hepa-
tocytes, immune cells and HSCs) during fibrogenesis,
which is challenging to mimic in vitro. As a conse-
quence, various surgical, genetic, toxic and nutritional
models are widely applied and serve as models for the
different types of fibrosis observed in humans (Table 1).
However, a very recent study has generally questioned
the benefit of rodent models for inflammatory research
[102]. In that report, the authors compared the gene ex-
pression changes in blood cells between mice and humans
in three different inflammatory scenarios (burn, trauma
and sepsis). Surprisingly, the expression profiles between
mouse models and human disease revealed poor correl-
ation. Although the affected primary organs (that is,
skin and liver) have not been investigated, the authors
of that study concluded that mouse models poorly re-
flect human inflammatory disease. In the context of that
provocative study, liver fibrosis researchers have to
carefully reevaluate if animal models of liver fibrosis are
indeed appropriate approaches for understanding and
healing human liver disease.
Within our consortium, Organ Fibrosis: From Mecha-

nisms of Injury to Modulation of Disease, we have suc-
cessfully shown that the animal models outlined above
are extremely helpful to understand general patho-
physiological pathways of fibrogenesis in humans.
For example, patients with chronic liver disease show
elevated expression of the chemokine CXCL16 and its
cognate receptor CXCR6. Likewise, Cxcl16 is strongly
expressed by endothelium and macrophages in mice,
whereas murine lymphocyte populations (NKT, NK, CD4
T and CD8 T cells) express CXCR6. Animal models of fi-
brosis (CCl4, MCD feeding) in combination with genetic
knockout approaches targeting CXCR6 enabled us to un-
ravel the underlying mechanism showing that hepatic
NKT cells provide CXCR6-dependent signals early upon
injury, thereby accentuating the inflammatory response in
the liver and promoting hepatic fibrogenesis. Interfering
with CXCR6/CXCL16 might therefore bear therapeutic
potential in liver fibrosis [208].
One of the most established animal models of chole-

static liver disease comprises genetic deletion of the
Mdr2 gene in mice [27]. There are several independent
reports that have shown that mutations or polymor-
phisms in the human MDR2 homologue are associated
with different entities of cholestatic liver disease in pa-
tients [26,209,210], which in turn underlines the benefit
of animal models for clinical fibrosis research.
In another example, our studies in human biopsies

from patients with liver fibrosis revealed increased cell-
cycle activity of hepatocytes and HSCs that was asso-
ciated with elevated expression of cyclin E1 and the
proto-oncogene c-myc [211,212]. The use of appropriate
transgenic mouse models confirmed these findings in ro-
dents and eventually clarified the underlying mechanism
defining cyclin E1 as a promising new therapeutic target.
Recent work by our consortium has shown that animal

models allow identification of novel biomarkers suitable
to detect inflammatory and fibrotic liver disorders in
both animals and humans. Such a biomarker is lipocalin
2 (LCN2), which belongs to the superfamily of lipocalins
representing a group of small secreted transport pro-
teins. We have demonstrated that LCN2 is strongly in-
creased in experimental models of acute liver injury and
that animals lacking LCN2 are more prone to hepatic
fibrogenesis [213,214]. On the basis of these findings, we
suggested that LCN2 plays a pivotal role in liver homeo-
stasis. In line with this hypothesis, we could demonstrate
that LCN2 is a reliable indicator of liver damage in pa-
tients with diseased livers [213].
Portal hypertension and ascites are key complications of

liver cirrhosis which are found in humans (regardless of
aetiology) as well as in all animal models of liver cirrhosis
[156,157,215]. Interestingly, vascular hypocontractility of
the splanchnic and systemic arterial bed always occurs in
rodents and humans. Furthermore, the initiators and path-
ways leading to an overproduction of the vasodilative ni-
tric oxide are quite similar and accompanied by highly
increased expression of vasoconstrictors [156]. Because of
the similarity of all these factors, animal models are quite
appropriate to study the pathophysiology of portal hyper-
tension, its consequences and treatment options. Consist-
ently, portal pressure and HSC activation in the BDL
model was reduced after oral application of statins by in-
fluencing intracellular signalling [160,216]. Similarly, it has
been shown that, in fact, statins also reduce portal pres-
sure in humans and improve liver function [151]. Portal
hypertension is associated with activation of the renin-
angiotensin system, which involves binding of angiotensins
to the G protein–coupled receptor Mas (MasR) [217] in
an attempt to maintain systemic vascular filling and blood



Table 1 Overview of mouse models of liver fibrosisa

Animal model Intervention Advantage Disadvantage Type of fibrosis Reference

Bile duct ligation (BDL) Surgical Fast and highly reproducible Cholestatic fibrosis [22]

Mdr2−/− mice Genetic Well-reproducible Long latency (3 to 6 months) Sclerosing cholangitis/
biliary fibrosis

[27]

Dominant-negative
TGFβRII mice

Genetic Resembles human disease Primary biliary
cirrhosis (PBC)

[28]

IL-2Ra−/− mice Genetic Resembles human disease PBC [29]

NOD.c3c4 mice Genetic Resembles human disease Injury of the extrahepatic biliary ducts PBC [31]

3,5-Diethoxy-carbonyl-
1,4-dihydrocollidine
(DDC)

Feeding Resembles human disease Sclerosing cholangitis
with oval cell
activation

[33]

α-Naphthylisothiocyanate
(ANIT)

Feeding Fast Cholestatic fibrosis [34]

CCl4 treatment Injection, oral Highly reproducible, fast, resembles properties of
human fibrosis, good comparability due to abundant
reference studies

Enhanced mortality by oral application Toxic fibrosis [43]

Thioacetamide (TAA)
treatment

Injection,
feeding

Injection, fast Feeding, long latency Toxic fibrosis and
hepatocellular
carcinoma (HCC)

[49-51]

Dimethylnitrosamine
(DMN)

Injection Fast Mutagenic and carcinogenic Toxic fibrosis and HCC [58]

High-fat diet Feeding Fast, resembles features of insulin resistance and
metabolic syndrome

Steatohepatitis and
subsequent fibrosis

[70,71]

Lieber-DeCarli diet Feeding Well-tolerated Long latency, only mild injury Alcohol-induced
liver fibrosis

[73]

Methionine- and choline-
deficient (MCD) diet

Feeding Fast, strong steatohepatitis along with elevated TNF Metabolic profile only partially reflects human SH, no
insulin resistance, body weight loss, different o ome in
different mouse strains

NASH-associated
fibrosis

[76,77,83,84]

CD (solely choline-
deficient) diet

Feeding Resembles sequence steatosis -inflammation - fibrosis NASH-associated
fibrosis

[88]

Choline-deficient,
ethionine-supplemented
(CDE) diet

Feeding Stronger NASH development compared to CD, activates
hepatic progenitor cells

NASH-associated
fibrosis

[90]

ob/ob mice Genetic Does not progress spontaneously to NASH or osis Fatty liver disease [91]

Diethylnitrosamine (DEN)
treatment

Injection High HCC incidence, highly reproducible, well-tolerated,
not associated with serious side effects

No development of fibrosis Resembles human HCC
associated with
poor prognosis

[184]
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Table 1 Overview of mouse models of liver fibrosisa (Continued)

DEN/CCl4 treatment Injection Reflects all stages of human liver disease from chronic
hepatitis leading to liver fibrosis

Resembles naturally
occurring HCC progression

[194]

Liver cell–specific
Nemo−/− mice

Genetic Spontaneous fibrosis development Cholestatic fibrosis and
HCC

[196]

Liver cell–specific
Tak1−/− mice

Genetic Spontaneous fibrosis development Cholestatic fibrosis and
HCC

[197]

aCCl4, Carbon tetrachloride; NASH, Nonalcoholic steatohepatitis; TNF, Tumour necrosis factor.
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pressure. A recent publication demonstrated that the
angiotensin–MasR axis controls similar or even identical
signals in both cirrhotic rats and patients [218], again
underpinning the power of animal experimentation.
Moreover, liver samples obtained from various disease

models have been used to develop novel quantitative
biometal imaging techniques allowing quantification of
various metals in healthy and fibrotic and/or cirrhotic
human liver specimens [219,220]. These methods are
based on laser ablation inductively coupled plasma mass
spectrometry and will affect clinical practice in identifi-
cation and evaluation of hepatic metal disorders (for ex-
ample, hereditary haemochromatosis, Wilson disease)
that give rise to hepatic fibrogenesis.
Conclusions
New international animal welfare rules will have a deep im-
pact on fibrosis research, at least in the EU. It is thus obvi-
ous that these new regulations will affect future efforts to
develop alternative animal replacement strategies. In paral-
lel, the scientific community should improve standardisa-
tion of fibrosis models to increase the comparability of data
between different laboratories with the aim of reducing ani-
mal experimentation. However, animal models are still the
gold standard in fibrosis research. New, sophisticated trans-
genic approaches will allow investigation of specialized
topics regarding fibrosis initiation, progression and reso-
lution. Current data from these animal models prove that
these findings are highly relevant and can be translated to
the clinic. We hope that this review will initiate a scientific
discussion of how to combine these increasing scientific in-
novations with enforced legal requirements.
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