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The fibrotic microenvironment as a heterogeneity
facet of hepatocellular carcinoma
Krista Rombouts1 and Vinicio Carloni2*
Abstract

It has long been recognized that hepatocellular carcinoma heterogeneity arises from variation in the
microenvironment or from genomic alteration. Only recently it has become clear that non-genetic alterations,
such as cytoskeletal rearrangement, protein localization and formation of protein complexes, are also involved in
generating phenotype variability. These proteome fluctuations cause genetically identical cells to vary significantly
in their responsiveness to microenvironment stimuli. In the cirrhotic liver pre-malignant hepatocytes are
continuously exposed to abnormal microenvironments, such as direct contact with activated hepatic stellate cells
(HSCs) and extracellular matrix components. These abnormal environments can have pronounced influences on the
epigenetic aspects of cells, translating into abnormal phenotypes. Here we discuss non-genetic causes of
phenotypic heterogeneity of hepatocellular carcinoma, with an emphasis on variability of membrane protein
complexes and transferred functions raising important implications for diagnosis and treatment.
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Introduction
Hepatocellular carcinoma (HCC) is the third leading
cause of cancer mortality worldwide and a significant in-
crease in the incidence of HCC through the last two de-
cades has been observed [1]. There are two prominent
features in the development of HCC. First, 90% of HCCs
have chromosomal abnormalities and, second, the great
majority of these tumors, regardless of aetiology, develop
in cirrhotic livers, which are characterized by destruction
of the hepatic lobular architecture and its replacement
by nodules containing proliferative hepatocytes, in the
presence of chronic inflammation and fibrosis [2].
A seminal feature of hepatocellular carcinoma is the

ability to produce multiple subpopulations of cells with
diverse genetic, biochemical and immunological charac-
teristics [3,4]. How this heterogeneity emerges and how
it is maintained is not clear [5,6]. Fluctuations in single
cells can be masked or completely misrepresented when
cell populations are analyzed. Therefore, intra-tumor
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heterogeneity may foster tumor evolution and adapta-
tion and hinder personalized-medicine strategies that
depend on results from imaging procedures or single
tumor-biopsy samples [7,8]. Along these lines, it has be-
come exceedingly apparent that the utility of measure-
ments based on the analysis of bulk tumors is limited by
intra-tumor genetic and epigenetic heterogeneity, as
characteristics of the most abundant cell type might not
necessarily predict the properties of the whole cell popu-
lations [8]. Indeed, this aspect is supported by a recent
report describing the presence of distinct diagnostic sig-
natures derived from different biopsies of the same
tumor [9]. Yet, such non-uniformities often unveil mo-
lecular patterns that can represent mechanisms of tumor
progression. More interestingly, variability among single
cells in a population may arise from different responses
to intrinsic and extrinsic perturbations coming from the
abnormal microenvironment that may have pronounced
influences on the epigenetic aspects of cells, translating
into abnormal phenotypes [10]. Therefore, it is tantaliz-
ing to hypothesize that normalization of the tumor
microenvironment corresponds to the normalization of
cellular phenotypes, and destabilization of normal tissue
organization can translate into an increased risk of
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genomic instability and phenotype heterogeneity [11,12].
The great interest concerning the tumor microenvironment
is associated with the recognition that micro-environ
mental alterations are not just passive consequences of
genetic evolution occurring in hepatocytes, but that
they are active participants in tumorigenesis [13]. As many
excellent reviews summarize progress in this area, we
focus on the effects of micro-environmental alterations
on the phenotypic heterogeneity of pre-malignant
hepatocytes.

Activated hepatic stellate cells
Pre-malignant hepatocytes live in a complex micro-
environment that includes the extracellular matrix
(ECM), diffusible growth factors and cytokines, and a
variety of non-epithelial cell types, including endothe-
lial cells, activated hepatic stellate cells (HSCs), and
those that can respond to infection and injury, that is,
lymphocytes, Kupffer cells-macrophages and mast cells
[14,15].
HSCs are known as very important ECM-producing

myofibroblasts dwelling in the cirrhotic liver and micro-
environment of HCC. The activated HSCs infiltrate the
stroma of liver tumors and localize around tumor sinu-
soids, fibrous septa and capsules [16,17]. Activated
HSCs increase the production and secretion of ECM
proteins, which include collagens, laminins, fibronectin
and heparan-sulphate proteoglycans. In this way, HSCs
have a major impact on the ECM content of the micro-
environment and also may affect the overall tumor stro-
mal behavior and vice versa [18]. Indeed, several studies
demonstrated that transformed hepatocytes stimulate
migration of HSCs in culture, as well as their produc-
tion of ECM components, when co-cultured, or when
HCC tumor-conditioned medium was used [19-21].
Hence, all support the concept that hepatocarcinoma
cells recruit HSCs, which then promote tumor growth
and local invasion [22]. The cancer cell-induced in-
crease in ECM synthesis is mediated by transforming
growth factor beta (TGF-β1), whereas proliferation of
HSCs is promoted by platelet-derived growth factor
(PDGF) [23,24]. This interaction, between HCC and
HSCs, is bidirectional since HSCs, in turn, stimulate
hepatocarcinoma cell proliferation and inhibit their
apoptosis to increase the population of cancer cells [25].
Proliferation of hepatocytes is mediated by factors secreted
by activated HSCs, such as insulin-like growth factor I
(IGF-I), transforming growth factor alpha (TGF-α), hep-
atocyte growth factor (HGF) and other inflammatory cyto-
kines [26,27]. Accumulating evidence indicates and points
to an important and major influence of activated HSC on
HCC development and progression and, hence, the thera-
peutic inhibition of activated HSCs should be taken into
account when treating HCC [28].
Premalignant and cancerous hepatocytes
Hepatocyte plasma membrane microdomains, the
tetraspanin paradigm
It has long been recognized that differences from one
cell to the next can arise through variation in the extra-
cellular environment or from genomic alteration. Only
recently it has become clear that plasma membrane pro-
tein fluctuations can also have profound effects on
phenotype. These fluctuations cause genetically identical
cells to vary significantly in their responsiveness to stim-
uli of the fibrotic microenvironment (Figure 1).
The spatial organization of plasma membrane compo-

nents in discrete microdomains is thought to be a key
factor in the generation of distinct signal inputs or out-
puts [29]. Dynamic microdomains have important impli-
cations for understanding how signaling complexes are
assembled and disassembled in response to ECM stim-
uli; some components of these signaling complexes
might reside permanently in these microdomains, but
others could have extremely transient interactions [30].
Tetraspanins are transmembrane proteins defined by

small and large outer loops, short N-terminal and C-
terminal tails with four transmembrane domains. They
form complexes termed tetraspanin-enriched micro-
domains (TEMs) by interacting with other tetraspanins
and with a variety of transmembrane and cytosolic pro-
teins that are required for their function [31]. Several
tetraspanin molecules have been identified and impli-
cated in the regulation of cell proliferation, cell migra-
tion and cell fusion [32]. The most important partners
are integrins, particularly α3β1, α4β1, α6β1 and α6β4,
intracellular associated heterotrimeric G proteins, prote-
ases, immunoglobulin superfamily members and cytosolic
signal transduction molecules [31]. The repertoire of
tetraspanins differs between cancer cell types; therefore, a
complete characterization of tetraspanin-associated pro-
teins and functions is difficult to accomplish and may not
be generalized. Nevertheless, in the majority of cancer cell
types, including HCC, a characteristic feature is the evi-
dent presence of integrins, signaling proteins and prote-
ases as important components of these domains [33].

Tetraspanin CD81
Tetraspanin CD81 was identified originally as the target
of an anti-proliferative antibody (TAPA-1) that inhibited
in vitro cellular proliferation [34]. CD81 is involved in a
broad range of cellular functions as revealed by the bind-
ing of monoclonal antibodies. The antibodies evoke their
effect by mimicking a natural ligand or by altering the
interactions between CD81 and its associated proteins. Al-
though the protein is widely expressed, its levels within a
single tissue vary in response to cellular activation. An im-
portant feature of tetraspanin CD81 is its ability to associ-
ate with itself forming homodimers and with various other



Figure 1 Interaction among factors that determine phenotypic heterogeneity in HCC. Combinations of environmental, genomic and
proteomic variation can cause heterogeneity in an initially homogenous population of pre-malignant hepatocytes.
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receptors into membrane microdomains. Up-regulation of
CD81 in pre-malignant hepatocytes can contribute to re-
organizing the plasma membrane in domains where sig-
naling proteins can be recruited [35]. CD81 regulation of
proliferation is positively associated with activation of the
extracellular signal-regulated kinase 1/2 (ERK1/2)/MAPK
pathway. CD81 overexpression can activate ERK1/2 while
promoting proliferation [35]. Importantly, CD81 induces
reorganization of the plasma membrane amplifying the
instability of pre-malignant hepatocytes and enhancing
their neoplastic progression. Therefore, phenotype hetero-
geneity could be influenced primarily by a fluctuation of a
single protein and associated factors organized in discrete
plasma membrane domains. These membrane micro-
domains represent versatile devices for compartmentaliz-
ing different signaling functions. In the non-activated state
they float freely, carrying a few passenger proteins, but,
when activated, they coalesce to form larger platforms
where proteins meet to transfer functions in signaling,
processing and transport [36].
When the hepatocytes progress in their transform-

ation, the tendency of CD81 expression is to be lost, as
revealed by two clinical studies showing a decreased or
absent CD81 expression, particularly in metastatic tis-
sues [37,38]. HCC cells re-expressing CD81 are still
capable of proliferating and producing the principal
tumor when injected into the liver of nude rats; how-
ever, they contain a defective faculty to produce tu-
mors in distant parts of the liver [39]. These findings
strengthen the vision that CD81 is a facilitator of cell
proliferation and in the meantime is a negative con-
troller/regulator of movement when expressed by the
cells. This is supported by the current view that cell
growth and ability to metastasize are two conditions of
malignancy not necessarily overlapping [40].

Tetraspanin CD151
The initial evidence that CD151 promotes metastasis
came from a study showing that an antibody with un-
known specificity inhibited metastasis formation by a
human epidermoid carcinoma cell line in vivo. The anti-
body was found to recognize CD151, and inhibit cell
migration without affecting adhesion or proliferation
[41]. Overexpression of CD151 is seen in many tumor
types. In breast, pancreatic, colorectal and non-small-
cell lung cancer, high CD151 expression is associated
with a poor prognosis [33].
Overexpression of CD151 has been associated with

poor prognosis also in HCC. Some studies have indi-
cated that CD151 overexpression promotes the metasta-
sis/invasion of cancer cells by mediating integrin signals,
while others have argued that an increased expression of
CD151 contributes to activate phosphatidylinositol 3-
kinase/protein kinase Akt pathway [42]. Indeed, the high
expressions of CD151 and α6 integrin are major contrib-
utors to the invasion-prone phenotype of HCC. In con-
trast with CD81, the contribution of CD151 to HCC
metastasis/invasion provides an example of the facilita-
tor role of this tetraspanin (Figure 2). Apart from
CD151, the tetraspanin TSPAN8 (previously known as
CO-029, TM4SF3) has been also associated with tumor
progression [43]. Overexpression of TSPAN8 is de-
scribed on hepatocellular carcinomas that are poorly dif-
ferentiated and prone to intrahepatic spreading [44].
Conversely, down-regulation of tetraspanin CD82/KAI1
was observed at the levels of both mRNA and protein.



Figure 2 Tetraspanin-enriched microdomain variation as a component of HCC progression. The signaling pathway varies between cell
types when differential TEM profiling is expressed following exposure to a cell agonist or through changes in the microenvironment. These
variations in signaling can profoundly affect the tumorigenicity and metastatic properties of HCC cells. a) Following stimulation, CD81-associated
proteins inhibit tumor cell migration, possibly through a blockade of ezrin-radixin-moesin (ERM) protein activation, inhibiting actin reorganization.
b) Reduced expression of CD81 and up-regulation of CD151, α6β1 integrin and ADAM10 foster invasion and possibly metastases through events
of actin cortex - membrane destabilization during cell motility.
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This was particularly pronounced in poorly differenti-
ated HCCs. Importantly, the CD82/KAI1 level correlated
inversely with intrahepatic metastases [45].

Differences in integrin expression and signaling within HCC
The pattern of integrins expressed by human hepatocytes
is strikingly different from most other epithelial cells [46].
Normal adult hepatocytes express low levels of only three
integrins: α1β1, a collagen and laminin receptor; α5β1, a
fibronectin receptor; and α9β1, a tenascin receptor. In
contrast, other integrin receptors, such as α2β1, α3β1,
α6β1 and α6β4, are undetectable on normal hepatocytes.
One of the most frequent alterations during liver carcino-
genesis is the de novo expression of the integrin, α6β1.
HCC patients characterized by multiple tumors, vascular
invasion and the absence of encapsulation exhibit in-
creased α6β1 expression [47]. In fact, the induction of
α6β1 is an early event in hepatocellular carcinogenesis,
and it is reasonable to consider that α6β1 contributes to
hepatocarcinogenesis based on several lines of evidence
[48-51]. For this reason, it is important to understand the
mechanism by which the α6β1 integrin influences the
function of HCC cells. One likely possibility is that α6β1-
mediated activation of focal adhesion kinase (FAK) and
ERK1/2 controls signaling pathways important for HCC
function [52]. Both FAK and ERK1/2 are of interest
because they are regulated by integrin-mediated at-
tachment to ECM, as well as growth factor stimulation,
and they control important functions of tumor cells, such
as growth and migration. Another possibility suggests that
overexpression of α6β1 could provide a ligand-independent
growth advantage by modulating the cellular architecture
or a signaling pathway required for cell growth [51].
Interestingly, the role of α3β1 integrin appears more

controversial in hepatocarcinogenesis. A previous study
indicated that TGF-β1 was able to induce a significant
increase in the expression level of α3β1, which consecu-
tively cooperated with TGF-β1 to induce HCC cell
epithelial-mesenchymal transition (EMT) [53]. In a re-
cent study, investigators could not confirm the previous
findings when evaluating α3β1 expression in HCC tissue
specimen of patients with high concentration of serum
TGF-β1 levels nor could be demonstrated a significant
up-regulation of α3β1 in HCC cells after 24 or 48 hours
of TGF-β1 stimulation. Indeed, they find that the ampli-
fied integrin α6β1 signaling pathway is able to induce
EMT of HCC cells [42].

ADAMs
ADAMs are multidomain proteins that contain a disintegrin
and a metalloprotease domain [54]. Their metalloprotease
domains can induce ectodomain shedding and cleave ECM
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proteins [55]. Their disintegrin and cysteine-rich domains
have adhesive and fusion activities. Hence, ADAMs are
poised to modulate a variety of cell-cell and cell-ECM in-
teractions. ADAM10, a member of the ADAM family, was
detected in all human HCC tissues tested by immunohis-
tochemistry but not in normal liver tissues [56]. Moreover,
CD44, a typical substrate of ADAM10 protease, was also
expressed in all human HCC tissues but not in normal
liver tissues. These data suggest that overexpression of
ADAM10 and CD44 is a characteristic of human HCC.
Specifically, ADAM10 is involved in the intramembrane
proteolysis process, whereby it mediates ectodomain
shedding of various membrane-bound receptors, adhe-
sion molecules, growth factors and cytokines [57].

Conclusions
HCC cell phenotypes are the result of the integration of
inputs from genotype and environmental stimuli. Epi-
genetic changes that arise during tumor progression
alter and diversify cellular phenotypes, posing a major
obstacle to the understanding and clinical management
of HCC. We suggest that the phenomenon of intra-
tumor phenotypic heterogeneity, especially aspects that
are related to clonal diversity, deserve to be recognized
and accounted for during the analysis of HCC tumor,
building of experimental models and design of thera-
peutic approaches.
The dominance of gene-centric views has been chal-

lenged with the rapid development of research establishing
that because tumors contain phenotypically distinct popu-
lations of both tumor and stromal cells that interact in a
dynamic and reciprocal manner, these interactions are
likely to result in the emergence of different proteome
profiling. This aspect creates significant problems in
employing therapeutic procedures in which micro-
environmental changes make a procedure inefficient
and in some regions of the HCC a therapeutic result
may not be achieved. This inequality of therapy gives
HCC cells time to develop resistant phenotypes. In
addition, components of the microenvironment can ac-
tively protect tumor cells from treatment through se-
creted factors and cell contact-mediated pro-survival
stimuli. Heterogeneity in the tumor microenvironment
translates into heterogeneity of tumor cell phenotypes,
and so some tumor cells might be intrinsically less sensi-
tive to the therapy. Intra-tumor heterogeneity, associated
with heterogeneous protein function, may promote HCC
progression through Darwinian selection.

Abbreviations
ADAM: A-disintegrin and metalloprotease; Akt: Protein kinase B;
ECM: Extracellular matrix; EMT: Epithelial-mesenchymal transition;
ERK: Extracellular regulated protein kinase; ERM: ezrin-radixin-moesin;
FAK: Focal adhesion kinase; HCC: Hepatocellular carcinoma; HGF: Hepatocyte
growth factor; HSCs: Hepatic stellate cells; IGF-I: Insulin-like growth factor I;
MAPK: Mitogen-activated protein kinase; PDGF: Platelet-derived growth
factor; TEMs: Tetraspanin-enriched microdomains; TGF-α: Transforming
growth factor-alpha; TGF-β1: Transforming growth factor-beta.

Competing interests
The authors declare that they have no competing interests.

Author’s contributions
KR and VC wrote the manuscript. VC finalized the manuscript and organized
the figures. Both authors read and approved the final manuscript.

Acknowledgments
We acknowledge support from Ente Cassa di Risparmio di Firenze (VC).

Author details
1Institute for Liver and Digestive Health, Royal Free Hospital, University
College London UCL, London, UK. 2Department of Experimental and Clinical
Medicine, Center for Research, Transfer and High Education, DENOthe,
University of Florence, Largo Brambilla 3, 50134, Florence, Italy.

Received: 23 July 2013 Accepted: 28 August 2013
Published: 16 September 2013

References
1. El-Serag HB: Hepatocellular carcinoma. N Engl J Med 2011, 365:1118–1127.
2. Farazi PA, DePinho RA: Hepatocellular carcinoma pathogenesis: from

genes to environment. Nat Rev Cancer 2006, 6:674–687.
3. Li Y, Tang ZY, Hou JX: Hepatocellular carcinoma: insight from animal

models. Nat Rev Gastroenterol Hepatol 2012, 9:32–43.
4. Tao Y, Ruan J, Yeh SH, Lu X, Wang Y, Zhai W, Cai J, Ling S, Gong Q, Chong

Z, Qu Z, Li Q, Liu J, Yang J, Zheng C, Zeng C, Wang HY, Zhang J, Wang SH,
Hao L, Dong L, Li W, Sun M, Zou W, Yu C, Li C, Liu G, Jiang L, Xu J, Huang
H, et al: Rapid growth of a hepatocellular carcinoma and the driving
mutations revealed by cell-population genetic analysis of whole-genome
data. Proc Natl Acad Sci U S A 2011, 108:12042–12047.

5. Gerlinger M, Swanton C: How Darwinian models inform therapeutic
failure initiated by clonal heterogeneity in cancer medicine. Br J Cancer
2010, 103:1139–1143.

6. Luo J, Solimini NL, Elledge SJ: Principles of cancer therapy: oncogene and
non-oncogene addiction. Cell 2009, 136:823–837.

7. Brock A, Chang H, Huang S: Non-genetic heterogeneity a mutation-
independent driving force for the somatic evolution of tumours. Nat Rev
Genet 2009, 10:336–342.

8. Marusyk A, Almendro V, Polyak K: Intra-tumour heterogeneity: a looking
glass for cancer? Nat Rev Cancer 2012, 12:323–334.

9. Gerlinger M, Rowan AJ, Horswell S, Math M, Larkin J, Endesfelder D,
Gronroos E, Pierre Martinez P, Matthews N, Stewart A: Intratumor
heterogeneity and branched evolution revealed by multiregion
sequencing. N Engl J Med 2012, 366:883–892.

10. Lee AJ, Endesfelder D, Rowan AJ, Walther A, Birkbak NJ, Futreal PA, Downward J,
Szallasi Z, Tomlinson IP, Howell M, Kschischo M, Swanton C: Chromosomal
instability confers intrinsic multidrug resistance. Cancer Res 2011, 71:1858–1870.

11. Egeblad M, Nakasone ES, Werb Z: Tumors as organs: complex tissues that
interface with the entire organism. Dev Cell 2010, 18:884–901.

12. Bissell MJ, Kenny PA, Radisky DC: Microenvironmental regulators of tissue
structure and function also regulate tumor induction and progression:
the role of extracellular matrix and its degrading enzymes. Cold Spring
Harb Symp Quant Biol 2005, 70:343–356.

13. Tlsty TD, Coussens LM: Tumor stroma and regulation of cancer
development. Annu Rev Pathol 2006, 1:119–150.

14. Leonardi GC, Candido S, Cervello M, Nicolosi D, Raiti F, Travali S, Spandidos
DA, Libra M: The tumour microenvironment in hepatocellular carcinoma.
Int J Oncol 2012, 40:1733–1747.

15. Wu SD, Ma YS, Fang Y, Liu LL, Fu D, Shen XZ: Role of the
microenvironment in hepatocellular carcinoma development and
progression. Cancer Treat Rev 2012, 38:218–225.

16. Mikula M, Proell V, Fischer AN, Mikulits W: Activated hepatic stellate cells
induce tumor progression of neoplastic hepatocytes in a TGF-beta
dependent fashion. J Cell Physiol 2006, 209:560–567.

17. Coulouarn C, Corlu A, Glaise D, Guénon I, Thorgeirsson SS, Clément B:
Hepatocyte-stellate cell cross-talk in the liver engenders a permissive



Rombouts and Carloni Fibrogenesis & Tissue Repair 2013, 6:17 Page 6 of 6
http://www.fibrogenesis.com/content/6/1/17
inflammatory microenvironment that drives progression in
hepatocellular carcinoma. Cancer Res 2012, 72:2533–2542.

18. Zhao W, Zhang L, Yin Z, Su W, Ren G, Zhou C, You J, Fan J, Wang X: Activated
hepatic stellate cells promote hepatocellular carcinoma development in
immunocompetent mice. Int J Cancer 2011, 129:2651–2661.

19. Sancho-Bru P, Juez E, Moreno M, Khurdayan V, Morales-Ruiz M, Colmenero
J, Arroyo V, Brenner DA, Ginès P, Bataller R: Hepatocarcinoma cells
stimulate the growth, migration and expression of pro-angiogenic genes
in human hepatic stellate cells. Liver Int 2010, 30:31–41.

20. Faouzi S, Lepreux S, Bedin C, Dubuisson L, Balabaud C, Bioulac-Sage P,
Desmoulière A, Rosenbaum J: Activation of cultured rat hepatic stellate
cells by tumoral hepatocytes. Lab Invest 1999, 79:485–493.

21. Xia Y, Chen R, Song Z, Ye S, Sun R, Xue Q, Zhang Z: Gene expression profiles
during activation of cultured rat hepatic stellate cells by tumoral hepatocytes
and fetal bovine serum. J Cancer Res Clin Oncol 2010, 136:309–321.

22. Garcia MG, Bayo J, Bolontrade MF, Sganga L, Malvicini M, Alaniz L,
Aquino JB, Fiore E, Rizzo MM, Rodriguez A, Lorenti A, Andriani O,
Podhajcer O, Mazzolini G: Hepatocellular carcinoma cells and their fibrotic
microenvironment modulate bone marrow-derived mesenchymal
stromal cell migration in vitro and in vivo. Mol Pharm 2011, 8:1538–1548.

23. Campbell JS, Hughes SD, Gilbertson DG, Palmer TE, Holdren MS, Haran AC,
Odell MM, Bauer RL, Ren HP, Haugen HS, Yeh MM, Fausto N: Platelet-
derived growth factor C induces liver fibrosis, steatosis, and
hepatocellular carcinoma. Proc Natl Acad Sci U S A 2005, 102:3389–3394.

24. Hou X, Kumar A, Lee C, Wang B, Arjunan P, Dong L, Maminishkis A, Tang Z, Li
Y, Zhang F, Zhang SZ, Wardega P, Chakrabarty S, Liu B, Wu Z, Colosi P, Fariss
RN, Lennartsson J, Nussenblatt R, Gutkind JS, Cao Y, Li X: PDGF-CC blockade
inhibits pathological angiogenesis by acting on multiple cellular and
molecular targets. Proc Natl Acad Sci U S A 2010, 107:12216–12221.

25. Nevzorova YA, Hu W, Cubero FJ, Haas U, Freimuth J, Tacke F, Trautwein C,
Liedtke C: Overexpression of c-myc in hepatocytes promotes activation
of hepatic stellate cells and facilitates the onset of liver fibrosis. Biochim
Biophys Acta 1832, 2013:1765–1775.

26. van Zijl F, Mair M, Csiszar A, Schneller D, Zulehner G, Huber H, Eferl R, Beug H,
Dolznig H, Mikulits W: Hepatic tumor-stroma crosstalk guides epithelial to
mesenchymal transition at the tumor edge. Oncogene 2009, 28:4022–4033.

27. Taura K, De Minicis S, Seki E, Hatano E, Iwaisako K, Osterreicher CH, Kodama
Y, Miura K, Ikai I, Uemoto S, Brenner DA: Hepatic stellate cells secrete
angiopoietin 1 that induces angiogenesis in liver fibrosis.
Gastroenterology 2008, 135:1729–1738.

28. Campbell JS, Johnson MM, Bauer RL, Hudkins KL, Gilbertson DG, Riehle KJ,
Yeh MM, Alpers CE, Fausto N: Targeting stromal cells for the treatment of
platelet-derived growth factor C-induced hepatocellular carcinogenesis.
Differentiation 2007, 75:843–852.

29. Simons K, Toomre D: Lipid rafts and signal transduction. Nat Rev Mol Cell
Biol 2000, 1:31–39.

30. Gao X, Lowry PR, Zhou X, Depry C, Wei Z, Wong GW, Zhang J: PI3K/Akt
signaling requires spatial compartmentalization in plasma membrane
microdomains. Proc Natl Acad Sci U S A 2011, 108:14509–14514.

31. Yáñez-Mó M, Barreiro O, Gordon-Alonso M, Sala-Valdés M, Sánchez-Madrid
F: Tetraspanin-enriched microdomains: a functional unit in cell plasma
membranes. Trends Cell Biol 2009, 19:434–446.

32. Mazzocca A, Carloni V, Sciammetta S, Cordella C, Pantaleo P, Caldini A,
Gentilini P, Pinzani M: Expression of transmembrane 4 superfamily
(TM4SF) proteins and their role in hepatic stellate cell motility and
wound healing migration. J Hepatol 2002, 37:322–330.

33. Zoller M: Tetraspanins: push and pull in suppressing and promoting
metastasis. Nat Rev Cancer 2009, 9:40–55.

34. Oren R, Takahashi S, Doss C, Levy R, Levy S: TAPA-1, the target of an
antiproliferative antibody, defines a new family of transmembrane
proteins. Mol Cell Biol 1990, 10:4007–4015.

35. Carloni V, Mazzocca A, Ravichandran KS: Tetraspanin CD81 is linked to
ERK/MAPKinase signaling by Shc in liver tumor cells. Oncogene 2004,
23:1566–1574.

36. Mukherjee S, Maxfield FR: Membrane domains. Annu Rev Cell Dev Biol 2004,
20:839–866.

37. Inoue G, Horiike N, Onji M: The CD81 expression in liver in hepatocellular
carcinoma. Int J Mol Med 2001, 7:67–71.

38. Schöniger-Hekele M, Hänel S, Wrba F, Müller C: Hepatocellular carcinoma–
survival and clinical characteristics in relation to various histologic
molecular markers in Western patients. Liver Int 2005, 25:62–69.
39. Mazzocca A, Liotta F, Carloni V: Tetraspanin CD81-regulated cell motility
plays a critical role in intrahepatic metastasis of hepatocellular
carcinoma. Gastroenterology 2008, 135:244–256.

40. Chiang AC, Massague J: Molecular basis of metastasis. N Engl J Med 2008,
359:2814–2823.

41. Testa JE, Brooks PC, Lin JM, Quigley JP: Eukaryotic expression cloning with
an antimetastatic monoclonal antibody identifies a tetraspanin (PETA-3/
CD151) as an effector of human tumor cell migration and metastasis.
Cancer Res 1999, 59:3812–3820.

42. Ke AW, Shi GM, Zhou J, Huang XY, Shi YH, Ding ZB, Wang XY, Devbhandari
RP, Fan J: CD151 amplifies signaling by integrin α6β1 to PI3K and
induces the epithelial–mesenchymal transition in HCC cells.
Gastroenterology 2011, 140:1629–1641.

43. Gesierich S, Berezovskiy I, Ryschich E, Zoller M: Systemic induction of the
angiogenesis switch by the tetraspanin D6.1A/CO-029. Cancer Res 2006,
66:7083–7094.

44. Kanetaka K, Sakamoto M, Yamamoto Y, Takamura M, Kanematsu T, Hirohashi
S: Possible involvement of tetraspanin CO-029 in hematogenous
intrahepatic metastasis of liver cancer cells. J Gastroenterol Hepatol 2003,
18:1309–1314.

45. Guo XZ, Friess H, Di Mola FF, Heinicke JM, Abou-Shady M, Graber HU,
Baer HU, Zimmermann A, Korc M, Büchler MW: KAI1, a new metastasis
suppressor gene, is reduced in metastatic hepatocellular carcinoma.
Hepatology 1998, 28:1481–1488.

46. Guo W, Giancotti FG: Integrin signalling during tumour progression.
Nat Rev Mol Cell Biol 2004, 5:816–826.

47. Begum NA, Mori M, Matsumata T, Takenaka K, Sugimachi K, Barnard GF:
Differential display and integrin alpha 6 messenger RNA overexpression
in hepatocellular carcinoma. Hepatology 1995, 22:1447–1455.

48. Torimura T, Ueno T, Kin M, Inuzuka S, Sugawara H, Tamaki S, Tsuji R,
Sujaku K, Sata M, Tanikawa K: Coordinated expression of integrin
alpha6beta1 and laminin in hepatocellular carcinoma. Hum Pathol 1997,
28:1131–1138.

49. Wewer UM, Shaw LM, Albrechtsen R, Mercurio AM: The integrin alpha 6
beta 1 promotes the survival of metastatic human breast carcinoma
cells in mice. Am J Pathol 1997, 151:1191–1198.

50. Nejjari M, Hafdi Z, Dumortier J, Bringuier AF, Feldmann G, Scoazec JY:
alpha6beta1 integrin expression in hepatocarcinoma cells: regulation
and role in cell adhesion and migration. Int J Cancer 1999, 83:518–525.

51. Carloni V, Romanelli RG, Mercurio AM, Pinzani M, Laffi G, Cotrozzi G, Gentilini P:
Knockout of alpha6 beta1-integrin expression reverses the transformed
phenotype of hepatocarcinoma cells. Gastroenterology 1998, 115:433–442.

52. Carloni V, Mazzocca A, Pantaleo P, Cordella C, Laffi G, Gentilini P: The
integrin, alpha6beta1, is necessary for the matrix-dependent activation
of FAK and MAP kinase and the migration of human hepatocarcinoma
cells. Hepatology 2001, 34:42–49.

53. Giannelli G, Bergamini C, Fransvea E, Sgarra C, Antonaci S: Laminin-5 with
transforming growth factor-beta1 induces epithelial to mesenchymal
transition in hepatocellular carcinoma. Gastroenterology 2005, 129:1375–1383.

54. Radisky DC, Bissell MJ: Matrix metalloproteinase-induced genomic
instability. Curr Opin Genet Dev 2006, 16:45–50.

55. Hoshida Y, Villanueva A, Kobayashi M, Peix J, Chiang DY, Camargo A, Gupta
S, Moore J, Wrobel MJ, Lerner J: Gene expression in fixed tissues and
outcome in hepatocellular carcinoma. N Engl J Med 2008, 359:1995–2004.

56. Kohga K, Takehara T, Tatsumi T, Miyagi T, Ishida H, Ohkawa K, Kanto T,
Hiramatsu N, Hayashi N: Anticancer chemotherapy inhibits MHC class
I-related chain a ectodomain shedding by downregulating ADAM10
expression in hepatocellular carcinoma. Cancer Res 2009, 69:8050–8057.

57. Yang CL, Jiang FQ, Xu F, Jiang GX: ADAM10 overexpression confers
resistance to doxorubicin-induced apoptosis in hepatocellular
carcinoma. Tumour Biol 2012, 33:1535–1541.

doi:10.1186/1755-1536-6-17
Cite this article as: Rombouts and Carloni: The fibrotic
microenvironment as a heterogeneity facet of hepatocellular carcinoma.
Fibrogenesis & Tissue Repair 2013 6:17.


	Abstract
	Review
	Introduction
	Activated hepatic stellate cells
	Premalignant and cancerous hepatocytes
	Hepatocyte plasma membrane microdomains, the tetraspanin paradigm
	Tetraspanin CD81
	Tetraspanin CD151
	Differences in integrin expression and signaling within HCC
	ADAMs


	Conclusions
	Abbreviations
	Competing interests
	Author’s contributions
	Acknowledgments
	Author details
	References

