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Abstract

Background: The two discoidin domain receptors (DDRs), DDR1 and DDR2 are receptor tyrosine kinases (RTKs)
with the unique ability among RTKs to respond to collagen. We have previously shown that collagen | induces

DDR1 and matrix metalloproteinase (MMP)-10 expression through DDR2 activation and a Janus kinase (JAK)2 and
extracellular signal-regulated kinase (ERK)1/2-mediated mechanism in primary human lung fibroblasts suggesting
that these signaling pathways play a role in fibroblast function. Fibroblasts can traverse basement membrane
barriers during development, wound healing and pathological conditions such as cancer and fibrosis by activating
tissue-invasive programs, the identity of which remain largely undefined. In the present work, we investigated the
role of DDRs and DDR-associated signal transduction in these processes.

Results: Transwell migration experiments showed that normal human lung fibroblast (NHLF) transmigration
through collagen |-coated inserts is mediated by DDR2 and the DDR2-associated signaling kinases JAK2 and ERK1/
2, but not DDRI1. Additionally, experiments with specific small interfering (si)RNAs revealed that collagen Il-induced
expression of MMP-10 and MMP-2 is DDR2 but not DDR1 dependent in NHLFs. Our data showed that collagen |
increases NHLF migration through collagen IV, the main component of basement membranes. Furthermore, basal
and collagen l-induced NHLF migration through collagen IV-coated inserts was both DDR2 and DDR1 dependent.
Finally, DDR2, but not DDR1 was shown to be involved in fibroblast proliferation.

Conclusions: Our results suggest a mechanism by which the presence of collagen | in situations of excessive
matrix deposition could induce fibroblast migration through basement membranes through DDR2 activation and
subsequent DDR1 and MMP-2 gene expression. This work provides new insights into the role of DDRs in fibroblast

function.

Keywords: collagen |, collagen IV, DDR, fibroblast migration, fibroblast proliferation, MMP

Background

Discoidin domain receptors (DDRs) are non-integrin
collagen receptors that belong to the receptor tyrosine
kinase family [1]. There are two related DDRs, DDR1
and DDR2. DDRI1 is mainly expressed in epithelial cells,
particularly of the lung, kidney, mammary gland and
gastrointestinal tract, whereas DDR2 is primarily found
in cells of mesenchymal origin, such as fibroblasts and
smooth muscle cells [1,2]. DDR1 can be activated by
most collagens including collagen I to IV and VIII,
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while DDR2 responds to collagen I and to a lesser
extent to collagen II, III and V, but does not recognize
collagen IV [3]. Collagen I is the most abundant protein
of interstitial connective tissue, whereas the more flex-
ible, network-forming collagen IV is the most important
structural component of basement membranes [4].
Studies with knockout mice and human carcinoma
cells have shown that DDR1 and DDR2 play important
roles in the expression of proinflammatory and profibro-
tic factors such as cyclooxygenase-2, bone morphoge-
netic protein (BMP)-2, BMP-5 and BMP-7, and several
matrix metalloproteinases (MMPs) [3,5-8]. DDRs have
been associated with processes such as extracellular
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matrix (ECM) remodeling, wound repair, migration, and
proliferation [2,5,1,9] and studies in vivo and in vitro
have implicated DDRs in various fibrotic and fibroproli-
ferative conditions such as cancer, atherosclerosis,
inflammation, arthritis, and fibrosis of the kidney, liver,
skin and lung [1,2,10-16].

Fibroblast migration and proliferation with deposition
of ECM proteins are main hallmarks of fibrotic and
wound healing processes [17]. In order to migrate
through connective tissue, fibroblasts must degrade the
surrounding basement membrane and accumulating evi-
dence suggest that fibroblast migration relies on the
activity of MMPs, which remodel basement membranes
by selectively degrading different components of the
ECM [18].

We have previously shown that collagen I can selec-
tively induce DDR1 expression through a DDR2-Janus
kinase (JAK)2-extracellular signal-regulated kinase (ERK)
1/2-mediated mechanism and independently of B1 integ-
rins in primary normal human lung fibroblasts (NHLFs).
Furthermore, our data showed that collagen I induced
the expression of several profibrotic factors and matrix-
degrading enzymes such as monocyte chemoattractant
protein-1 (MCP-1), BMP-2, MMP-2, and MMP-10 in
NHLFs and that silencing of DDR2, but not DDR1 with
specific small interfering (si)RNAs inhibited collagen I-
induced MMP-10 expression in these cells [19]. MMP-
10 is a broad-spectrum matrix metalloproteinase that is
able to degrade a wide range of components of the
ECM and basement membranes including collagens III
and IV, laminin, and elastin [20-22]. Similarly, MMP-2
can contribute to the breakdown of a range of ECM
proteins such as fibronectin and collagens including col-
lagen I, IV, V and x and is also responsible for the acti-
vation of other MMPs such as MMP-9, and MMP-13,
playing an important role in cell migration and tissue
remodeling [23]. Importantly, the involvement of DDR2
in both the expression of several MMPs and in the reg-
ulation of DDR1 expression, the only DDR isoform with
the ability to recognize network-forming collagen IV,
suggests an important role for DDR1 and DDR2 in tis-
sue remodeling and disease. Based on our previous find-
ings we hypothesized that DDR1 and DDR2 may play a
role in inducing an invasive fibroblast phenotype via col-
lagen driven mechanisms.

Results

Collagen | induces migration of primary human lung
fibroblasts through collagen IV

There is a large body of evidence highlighting the
impact of various ECM proteins on cellular function
including cell differentiation, attachment, and migration.
To address the question whether collagen I is able to
induce NHLF migration we performed transwell
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migration assays using inserts coated with different
ECM proteins including network-forming collagen IV
and fibronectin, as well as non-coated inserts. Our
results show that the level of constitutive NHLF migra-
tion was higher through inserts coated with fibronectin
compared to non-coated, and collagen IV-coated inserts,
and was not further enhanced upon collagen I stimula-
tion. In contrast, collagen I significantly enhanced con-
stitutive NHLF transmigration through both non-coated
and collagen IV-coated inserts (Figure 1). These results
indicate that different ECM components have different
effects on fibroblast migration and suggest a possible
link between collagen I-induced gene expression and
fibroblast migration through basement membranes.

Collagen l-induced MMP-2 expression is DDR2 but not
DDR1 dependent in NHLFs

DDRs have been implicated in the expression of several
factors involved in cell migration and wound healing
such as MMPs [24]. We have previously shown that col-
lagen I induces MMP-10, and MMP-2, but not MMP-9
mRNA expression in NHLFs. Furthermore, collagen I-
induced MMP-10 expression was shown to be DDR2
but not DDR1 dependent in these cells [20]. In the pre-
sent study, collagen I-induced MMP-2 mRNA (Figure
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Figure 1 Collagen | induces normal human lung fibroblast
(NHLF) migration through collagen IV. NHLFs were grown on
non-coated 8.0 um polycarbonate inserts, or inserts coated with
collagen IV (10 pg/cm?) or fibronectin (5 pg/cm?). Cells were serum-
starved for 24 h and incubated with collagen | (25 pg/mL) or
vehicle (acetic acid, 0.1 M) for 24 h. The bottom chamber was
treated with cell dissociation buffer and acetomethoxycalcein
(calcein AM) for 1 h at 37°C. Fluorescence of solution with detached
cells was measured at 485 nm excitation and 520 nm emission.
Results are representative of mean fold increase + SD of two
independent experiments performed in triplicate (n = 6, **P < 0.01).
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2A) and protein expression (Figure 2B) in NHLFs was
significantly inhibited by DDR2-specific, but not DDR1-
specific, siRNAs. Taken together, these results suggest
an important role of DDR2 in collagen I-induced
expression of both MMP-10 and MMP-2.

Constitutive and collagen Il-induced NHLF migration
through collagen IV is DDR2 dependent

Since DDR2-induced DDR1 is involved in collagen IV
recognition, and both MMP-10 and MMP-2 are
involved in collagen IV degradation, we investigated
whether collagen I-induced activation of DDR2 and
downstream signaling play a role in fibroblast transmi-
gration through collagen IV. We explored the role of
DDR2 and 1, as well as the DDR2-associated kinases
JAK2, and ERK1/2 in NHLF migration through collagen
I and collagen IV matrices using transwell migration
experiments. As shown in Figure 3A, NHLF migration
through collagen I-coated inserts was significantly inhib-
ited in the presence of DDR2-specific, but not DDR1-
specific, siRNA, suggesting a role for DDR2 in the mod-
ulation of fibroblast migration though collagen I. While
both DDR1 and DDR2 have been shown to recognize
collagen I [1,25] our results suggest that only DDR2 is
necessary for maximum migration of NHLFs through
collagen I matrices. Accordingly, migration through col-
lagen I-coated inserts was also significantly inhibited in
NHLFs transfected with JAK2-specific and ERK1/2-spe-
cific siRNA (Figure 3B) further confirming the role of
DDR?2 signaling in substrate recognition and subsequent
migration of fibroblasts through collagen I-containing
matrices. Furthermore, basal as well as collagen I
induced migration of NHLFs through collagen IV was
significantly inhibited by both DDR2-specific and
DDR1-specific siRNAs (Figure 3C), reflecting the unique
ability of DDRI1 to recognize collagen IV. Interestingly,
and importantly with regard to the functional role of
DDR?2 in fibroblast migration, activation of DDR2 and
the DDR2-associated kinases JAK2, and ERK1/2 (Figure
3D) appear to be involved in fibroblast migration
through collagen IV even though DDR2 is not able to
recognize collagen IV.

MMP-2 is involved in collagen I-induced NHLF migration
through collagen IV

Since collagen I-induced expression of both MMP-10
and MMP-2 is DDR2 dependent, and DDR2 appears to
be involved in NHLF transmigration through collagen
IV, we investigated whether collagen I-induced NHLF
migration is also dependent on MMP-10 or MMP-2. As
shown in Figure 4, NHLF migration was significantly
inhibited in the presence of MMP-2-specific, but not
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Figure 2 Collagen | induces matrix metalloproteinase (MMP)-
2 expression through discoidin domain receptor (DDR)2, but
not DDR1 in normal human lung fibroblasts (NHLFs). NHLFs
were reverse transfected with negative control small interfering
(si)RNA, and DDR2-specific and DDR1-specific siRNA using
lipofectamine RNAIMAX. At 48 h after transfection, NHLFs were
serum-starved for 24 h and incubated with collagen | (25 pg/mL)
or vehicle (acetic acid, 0.1 M) for 16 h. Total RNA was isolated,
reverse transcribed and real-time quantitative PCR was performed
using the TagMan system with specific primers and TagMan
probes for human, MMP-2 (A), and glyceraldehyde 3-phosphate
dehydrogenase (GAPDH). The expression changes (fold increase)
were calculated relative to unstimulated control cells after
normalizing with GAPDH. Results are representative of mean fold
increase + SD of three independent experiments performed in
triplicate (n = 9, *P < 0.05). NHLFs were transfected with DDR2-
specific or DDR1-specific siRNAs or negative control siRNA prior
to starvation and 16 h of collagen | stimulation. MMP-2 (B)
protein was measured in the culture supernatant by ELISA.
Results are representative of mean fold increase + SD of three
independent experiments performed in triplicate (n = 9, *P <
0.05).
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Figure 3 Normal human lung fibroblast (NHLF) migration through collagen | and collagen IV is discoidin domain receptor (DDR)2-
dependent. NHLFs were reverse transfected with negative control small interfering (si)RNA, or specific siRNA for DDR2, DDR1 (A, C), Janus
kinase (JAK)2, or extracellular signal-regulated kinase (ERK)1/2 (B, D) using lipofectamine RNAIMAX. At 48 h after transfection, NHLFs were serum-
starved for 24 h and transferred to 80 um polycarbonate inserts coated with collagen | (10 ug/cm?) (A, B) or collagen IV (10 pg/cm?) (C, D).
Where indicated, cells were incubated with collagen | (25 pg/mL) or vehicle (acetic acid, 0.1 M) for an additional 16 h (E). The bottom chamber
was treated with cell dissociation buffer and acetomethoxycalcein (calcein AM) for 1 h at 37°C. The fluorescence of solution with detached cells
was measured at 485 nm excitation and 520 nm emission. Results are representative of mean fold increase + SD of two independent
experiments performed in triplicate (n = 6, *P < 0.05, **P < 0.01).

MMP-10-specific, siRNA, indicating a crucial role of
collagen I/DDR2-induced MMP-2 expression in NHLF
migration through collagen IV.

NHLF proliferation is DDR2, but not DDR1 dependent

In addition to enhanced migratory capacity, increased
proliferation can also contribute to a more invasive
fibroblast phenotype. We next investigated if collagen
stimulation increases fibroblast proliferation and the

role of DDR1 and DDR?2 in this process. As shown in
Figure 5 collagen I failed to induce NHLF proliferation,
suggesting that collagen I-induced transmigration of
NHLFs through collagen IV is not due to enhanced cell
proliferation but to an increased migratory capacity of
these cells. However, DDR2 appears to play a role in
collagen-independent fibroblast proliferation as transfec-
tion of NHLFs with DDR2-specific, but not DDR1-speci-
fic, siRNA significantly inhibited constitutive NHLF
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Figure 4 Normal human lung fibroblast (NHLF) migration
through collagen IV is matrix metalloproteinase (VMP)-2-
dependent. NHLFs were reverse transfected with negative control
small interfering (si)RNA, or specific siRNA for MMP-10, or MMP-2
using lipofectamine RNAIMAX. At 48 h after transfection, NHLFs
were serum-starved for 24 h and transferred to 8.0 um
polycarbonate inserts coated collagen IV (10 pg/cm?). Cells were
incubated with collagen | (25 ug/mL) or vehicle (acetic acid, 0.1 M)
for an additional 16 h. The bottom chamber was treated with cell
dissociation buffer and acetomethoxycalcein (calcein AM) for 1 h at
37°C. The fluorescence of solution with detached cells was
measured at 485 nm excitation and 520 nm emission. Results are
representative of mean fold increase + SD of two independent
experiments performed in triplicate (n = 6, *P < 0.05).

proliferation (Figure 5). These data suggest an important
role for DDR2 in fibroblast proliferation, and also high-
lights different roles for DDR1 and DDR2 in NHLF
function.

Discussion

In this study we show that constitutive and collagen I-
induced NHLF migration through collagen IV is
mediated by both DDR2 and DDR1. Additionally, silen-
cing of the DDR2-associated kinases JAK2 and ERK1/2
with specific siRNAs inhibited migration of NHLFs
through both collagen I-containing and collagen IV-con-
taining matrices, strengthening the hypothesis that
DDR2 signaling is important for human fibroblasts to
enable them to recognize and degrade collagen IV.
Furthermore, we have also shown that only DDR2
appears to be required for NHLF migration through col-
lagen 1.

We have previously shown that collagen I induces
DDR1 and MMP-10 expression through the activation
of DDR2 in primary human lung fibroblasts suggesting
a key role for both DDR1 and DDR?2 in fibroblast func-
tion in situations associated with excessive matrix

Figure 5 Normal human lung fibroblast (NHLF) proliferation is
discoidin domain receptor (DDR)2, but not DDR1 dependent.
NHLFs were reverse transfected with DDR2-, DDR1-specific small
interfering (si)RNA or negative control siRNA using lipofectamine
RNAIMAX. At 48 h after transfection, NHLFs where transferred to a
96-well black walled plate at 3,000 cells/well. Cells were serum-
starved for 24 h and incubated with collagen | (25 pg/mL) or
vehicle (acetic acid, 0.1 M) for an additional 16 h. Cell proliferation
was determined using the DELFIA proliferation assay kit and
measuring time-resolved fluorescence at 340 nm excitation and
615 nm emission. Results are representative of mean fold increase
+ SD of two independent experiments performed in triplicate (n =
6, **P < 0.01).

deposition, such as fibrosis and wound healing. Knock-
down experiments using specific siRNAs also confirmed
an important role for both JAK2 and ERK1/2 in both
constitutive and collagen I-induced DDRI expression.
Importantly, basal protein expression levels of DDR1 as
well as constitutive phosphorylation of JAK2 and ERK1/
2 were reduced in NHLFs in the presence of DDR2-spe-
cific siRNA, suggesting a link between DDR2 activation,
JAK2 and ERK1/2 phosphorylation, and DDR1 expres-
sion [20].

The interaction of fibroblasts with the ECM and
their subsequent migration into regions of injury and
remodeling are major factors that contribute to wound
healing and fibrosis [26]. DDRs have been shown to
play an important role in cell adhesion, migration, pro-
liferation and ECM remodeling by controlling the
expression and activity of MMPs [1,27]. For example,
Olaso et al. have demonstrated that skin fibroblasts
from DDR2 knockout mice present impaired prolifera-
tion and migration through a reconstituted basement
membrane concomitantly with the expression of
MMP-2 [7]. Nevertheless, the functional significance of
DDR activation in human lung fibroblasts has not been
extensively characterized.
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Together with MMP-10, type IV collagenases such as
MMP-2 and MMP-9 are also able to degrade collagen
IV and have been implicated in cell migration [28]. We
have previously shown that collagen I induces the
expression of MMP-10 and MMP-2, but not MMP-9 in
primary human lung fibroblasts. Furthermore, our find-
ing that DDR2-mediated collagen I induction of MMP-
10 expression was also JAK2 and ERK1/2 dependent in
NHLFs highlights the importance of these pathways in
collagen I-induced expression of ECM degrading metal-
loproteinases [19]. MMP-10 has been shown to play a
major role in tissue remodeling as it is not only able to
degrade collagen III and IV, gelatin, proteoglycans and
elastin [21,22], but is also responsible for the activation
of other MMPs such as MMP-1, MMP-8, and MMP-9
[29]. In the present study we have shown that, together
with MMP-10, collagen I-induced MMP-2 mRNA and
protein expression are DDR2 but not DDR1 dependent.
MMP-2 is not only able to degrade a wide range of
ECM components such as elastin, fibronectin and most
collagens but is also involved in the processing of
growth factors and cytokines such as tumor necrosis
factor and interleukin-1p, into their biologically active
forms [30,31]. Experiments with MMP-10-specific and
MMP-2-specific siRNA showed that collagen I-induced
NHLF transmigration through collagen IV-coated inserts
is MMP-2 but not MMP-10 dependent in NHLFs.
MMP-2 has been shown to function as an autocrine
regulator of proliferation and migration in human kera-
tinocytes [28], and human airway smooth muscle cells
[32]. Several studies suggest that while matrices rich in
fibrillar collagens maintain fibroblasts in an active state,
basement membrane proteins slow collagen production
and receptor expression [33,34]. Thus, degradation of
the basement membrane by fibroblast-derived MMPs
such as MMP-2 is likely to induce continued interstitial
collagen production in fibroblasts.

The finding that the expression of DDR1 and MMP-2
in NHLFs is DDR2 dependent led us to hypothesize that
constitutive and collagen I-induced activation of DDR2
could increase the ability of NHLFs to recognize and
degrade basement membrane collagen IV, thereby facili-
tating fibroblast migration through connective tissue.
While we cannot formally rule out the possibility that in
our experimental system collagen I coating impacts cel-
lular adhesion and thereby modifies migration in a
DDR-independent manner, our data strongly suggest a
DDR2-mediated mechanism.

DDR?2 has been reported to be only activated by fibril-
forming collagens and collagen x however DDR1 can
recognize a wide range of collagen types, including both
fibril-forming collagen I and network-forming collagen
IV, the main component of basal lamina [26,35]. DDR2
is much more abundantly expressed in fibroblasts than
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DDRI1 and constitutive expression of DDR1 in NHLFs
where DDR2 has been silenced does not seem to be suf-
ficient for NHLFs to migrate through collagen I.
Furthermore, our results on NHLFs transfected with
DDR1-specific siRNA suggest that primarily DDR2 is
responsible for recognizing collagen I in NHLFs, further
strengthening the critical role of DDR2 in fibroblast
migration. In contrast, constitutive and collagen I-
induced DDR1 expression seems to be involved in fibro-
blast migration through collagen IV confirming previous
reports showing a key role of DDR1 in fibroblast migra-
tion [36]. Interestingly, the silencing of DDR2, which
does not recognize collagen IV [25], and the DDR2-
associated kinases JAK2, and ERK1/2 also abrogated
constitutive and collagen I-induced migration of NHLFs
through collagen IV suggesting that the role of DDR2 in
NHLF migration through collagen IV-coated inserts is
likely to be due to constitutive and collagen I-induced
DDR2 activation, and DDR2-dependent signal transduc-
tion and gene expression. Interestingly, DDR2-specific,
but not DDR1-specific, siRNA also inhibited NHLF pro-
liferation suggesting a wider role for DDR2 in fibroblasts
function.

Conclusions

In the present work we show that, while DDRI is
involved in NHLF migration through collagen IV, DDR2
modulates NHLF migration through both fibril-forming
collagen I and network-forming collagen IV matrices.
Our results suggest that collagen I-induced DDR2 acti-
vation and subsequent DDR1 and MMP-2 expression
further equips human lung fibroblasts with the neces-
sary machinery to recognize and degrade collagen IV,
thereby facilitating fibroblast transmigration through
basement membranes. Furthermore, our data show that
the proliferation of NHLFs is also DDR2 dependent, but
not DDR1 dependent, suggesting specific roles for
DDRI1 and DDR2 in human lung fibroblast function.

Methods

Cell culture and reagents

NHLFs (Lonza, Basel, Switzerland) were grown in Dul-
becco’s modified Eagle medium (DMEM) supplemented
with 15% fetal bovine serum (FBS) and 1% penicillin/
streptavidin (Life Technologies, Paisley, UK) in a humi-
dified 5% CO2 atmosphere at 37°C. Prior to treatment,
cells were serum starved overnight. Cells were stimu-
lated with collagen I from rat tail (25 pg/mL) or vehicle
(acetic acid, 0.1 M).

RNA isolation and real-time quantitative reverse
transcription (qRT)-PCR

RNA from NHLFs was extracted using RNeasy Plus Kit
(Qiagen, Crawley, UK) according to manufacturer’s
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instructions. For reverse transcription, 100 ng of total
RNA was added to 50 pL of reaction buffer containing
RT-PCR Buffer, MgCl, (5.5 mM), desoxyribonucleoside
triphosphate mixture (500 M), random hexamers (2.5
uM), RNase inhibitors (0.4 U/pL) and MultiScribe
Reverse Transcriptase (1.25 U/uL) (all reagents from
Applied Biosystems), and incubated for 10 minutes at
25°C followed by 30 minutes at 48°C and 5 minutes at
95°C. Real-time PCR was performed using TaqgMan sys-
tem 7900HT (Life Technologies, Paisley, UK). TagMan
probes and primers used for the reaction is as follows,
DDRI1: 5-GCGTCTGTCTGCGGGTAGAG-3’, (forward)
5-ACGGCCTCAGATAAATACATTGTCT-3’ (reverse),
6-FAM-AGGGATGGACTCCTGTC-MGB (TagMan
probe) (99 bp), DDR2: 5-TGTTCCTGCTGCT
GCCTATCTT-3’ (forward), 5-AGGATAGCGGCATA-
TAGCTGGAT-3" (reverse), 6-FAM-AGTTCTGCA
AAAGCTCAGGT-MGB (TagMan Probe) (68 bp),
MMP-10: 5-TCACAGAGCTCGCCCAGTT-3’ (for-
ward), 5-CGTAGAGAGACTGAATGCCATTCA-3’
(reverse), 6-FAM-CCTTTCGCAAGATGAT-MGB (Tag-
Man Probe) (63 bp), MMP-2: 5-CGTCTGTCCCAG-
GATGACATC-3" (forward), 5-TGTCAGGAGAGG
CCCCATAG-3’ (reverse), 6-FAM-AGGGCATTCAG-
GAGC-MGB (TagMan Probe) (58 bp). For real-time
qRT-PCR 1 pL ¢cDNA was added to a total volume of
20 pL of reaction buffer containing TagMan Fast Uni-
versal master mix (Life Technologies, Paisley, UK), Taq-
Man probes (0.3 pM) and forward and reverse primers
(0.9 uM). PCR was performed by denaturation at 95°C
for 20 s, followed by 40 cycles of 95°C for 1 s and 60°C
for 20 s. The expression changes (fold increase) were
calculated relative to unstimulated control cells using
the crossing points of the log linear portion of the
amplification curve after normalizing with glyceralde-
hyde 3-phosphate dehydrogenase (GAPDH) endogenous
control (VIC/MGB) (Life Technologies, Paisley, UK).

Small interference RNA (siRNA) and transfection

Negative control 2# siRNA, human DDR2-specific
siRNA, human DDR1-specific siRNA, human MMP-10-
specific siRNA, and human MMP-2-specific siRNA were
synthesized by Applied Biosystems. The sequence of
DDR2 siRNA is as follows: 5-GCACUGUCAGUUA-
CACCAATT-3’ (sense) and 5-UUGGUGUAACUGA-
CAGUGCGT-3’ (antisense). The sequence of DDR1
siRNA is as follows: 5-GGCUAUGCAGGUCCACU-
GUTT-3" (sense) and 5-ACAGUGGACCUGCAU
AGCCTG-3’ (antisense). The sequence of MMP-10
siRNA is as follows: 5-GAGAAUAUCUGUUCUUUAA
TT-3" (sense) and 5-UUAAAGAACAGAUAUU-
CUCCC-3’ (antisense). The sequence of MMP-2 siRNA
is as follows: 5-GGAAAAGAUUGAUGCGGUATT-3’
(sense) and 5'-UACCGCAUCAAUCUUUUCCGG-3’
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(antisense). JAK2-specific and ERK1/2-specific siRNAs
were obtained from Cell Signaling Technologies. For
siRNA delivery, NHLFs were reverse transfected with 10
nM siRNA using lipofectamine RNAiMAX (Life Tech-
nologies, Paisley, UK) according to manufacturer’s
instructions. At 48 h after transfection, cells were serum
starved for 24 h prior to treatment with collagen I (25
pug/mL) or vehicle (acetic acid, 0.1 M). Transfection of
NHLFs with specific siRNAs suppressed DDR2 by 91.7%
(P = 0.002), DDRI by 85.7% (P = 0.008), JAK2 by 93.5%
(P = 0.003), ERK1/2 by 90% (P = 0.004), MMP-10 by
88.2% (P = 0.006), and MMP-2 by 90.7% (P = 0.004),
versus control.

Western blotting and immunoprecipitation

NHLFs were lysed in radioimmune precipitation assay
buffer containing 50 mM Tris (pH 8), 150 mM NacCl,
1% Triton X-100, 0.5% deoxycholate acid, 0.1% SDS,
proteinase inhibitors (Roche Diagnostics, Burgess Hill,
UK) and protease inhibitors (Roche Diagnostics, Burgess
Hill, UK). Cell debris was removed by centrifugation
and supernatants were denatured at 94°C in 4 x
NuPAGE sample buffer (Life Technologies, Paisley, UK)
containing 5% 2-mercaptoethanol. Protein samples (20
ng) were subjected to electrophoresis on a 4-10% Bis-
Tris (MOPS) NuPAGE gel (Life Technologies, Paisley,
UK) and blotted onto a nitrocellulose membrane (Life
Technologies, Paisley, UK). Membranes were blocked
for 1 h in Tris-buffered saline (TBS), 0.1% (v/v) Tween-
20 and 5% (w/v) non-fat dried milk. Immunodetection
was carried out using anti-phospho-ERK1/2 (T185
+Y187) (Life Technologies, Paisley, UK), anti-ERK1/2
(Cell Signaling Technologies, Danvers, MA, USA), anti-
phospho-JAK2 (Y1007/Y1008) (Abcam, Cambridge, UK),
anti-JAK2 (Santa Cruz Heidelberg, Germany,), anti-
DDR1, anti-DDR2 (both from R&D Systems, Abingdon,
UK), and anti-GAPDH (Santa Cruz, Heidelberg, Ger-
many). The bands were visualized using the ECL system
(GE Healthcare Life Sciences, Little Chalfont, UK).

Enzyme-linked immunosorbent assay (ELISA) analysis

The concentration of pro-MMP-2 and mature MMP-2,
and pro-MMP-10 in NHLFs culture supernatants was
determined by MMP-2, and MMP-10 Quantikine ELISA
(R&D Systems), respectively, according to manufac-
turer’s instructions.

Cell migration assay

NHLFs were seeded into polycarbonate inserts with an
8.0 um pore size in a 24-well plate (Corning, Corning,
NY, USA) at 75,000 cells/well. Where indicated, inserts
were coated with collagen I (10 pg/cm?), collagen IV (10
ug/cm?) (both from Sigma-Aldrich, Gillingham, UK) or
human plasma-derived fibronectin (5 pg/cm?) (R&D
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Systems, Abingdon, UK). Cells were serum starved over-
night, and where indicated collagen I (25 pg/mL) was
added to top and bottom chamber for 16 h. Bottom
chamber was treated with cell dissociation buffer (Life
Technologies, Paisley, UK) and acetomethoxycalcein
(calcein AM; Trevigen, AMS Biotechnology, Abingdon,
UK) for 1 h at 37°C. The suspension of detached cells
was transferred to a 96-well plate and fluorescence was
measured at 485 nm excitation and 520 nm emission.

Cell proliferation assay

Cell proliferation was determined using the DELFIA
proliferation assay kit (PerkinElmer, Cambridge, UK)
according to manufacturer’s instructions. Briefly, NHLFs
were seeded into a 96-well black walled plate at 3,000
cells/well and grown in humidified 5% CO2 atmosphere
at 37°C. Cells were serum starved overnight, and incu-
bated with collagen I (25 pg/mL) or vehicle (acetic acid,
0.1 M) for 16 h. NHLFs were incubated with 5-bromo-
2’-deoxyuridine (BrdU) for an additional 16 h, fixed and
incubated with anti-BdrU labeled with europium for 90
minutes. Time-resolved fluorescence was measured at
340 nm excitation and 615 nm emission.

Statistical analysis

Data were expressed as the mean + SD of six or more
independent experiments. Statistical analysis was per-
formed using one-way analysis of variance (ANOVA)
followed by the Tukey test. Significance was set as P <
0.05.
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