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Activation of hepatic stellate cell in Pten
null liver injury model
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Abstract

Background: Hepatic fibrosis is a prominent pathological feature associated with chronic liver disease including
non-alcoholic hepatosteatosis (NASH), and a precursor for liver cancer development. We previously reported that
PTEN loss in the liver, which leads to hyperactivated liver insulin signaling results in NASH development. Here we
used the same mouse model to study the progression from steatosis to fibrosis.

Results: The Pten null livers develop progressive liver fibrosis as indicated by Sirius Red staining and increased
expression of collagen I, Timp 1, SMAα, and p75NTR. Consistently, hepatic stellate cells (HSCs) isolated from Pten
null livers are readily activated when compared with that from mice with intact PTEN. Deletion of AKT2, the
downstream target of PTEN signal, blocked NASH development, and alleviated fibrosis. HSCs from the Pten/Akt2
double null mice are quiescent like those isolated from the control livers. Our analysis shows that the activation
of HSCs does not depend on the intrinsic signals regulated by PI3K/AKT, the target of PTEN, but does depend on
steatosis and injury to the liver. During the progression of liver fibrosis in the Pten null model, Wnt ligands and
signaling receptor are induced, concurrent with the reduction of sFRP5, a Wnt antagonist. We showed that
treatment of HSCs with Wnt receptor antagonist blocks the observed morphological changes when HSCs undergo
activation in culture. This signal appears to be mediated by β-catenin, as manipulating β-catenin signaling alters
marker gene expressions of HSC activation.

Conclusions: Wnt/β-catenin activation serves as an important mediator for fibrosis development resulting from
NASH using a mouse model where NASH is mimicked by PTEN loss.
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Background
Fatty liver disease (FLD) is the most prevalent form of
chronic liver disease and has become a major pandemic
in developed and some developing countries. FLD is
characterized by lipid accumulation in the liver resulting
from sedentary lifestyle, calorie-rich diet, or alcohol con-
sumption. Without intervention, FLD can develop into
non-alcoholic or alcoholic hepatosteatosis (NASH or
ASH) where fatty liver is accompanied by infiltration of
inflammatory cells. Left untreated, NASH and ASH can

develop into fibrosis, a common late stage chronic liver
disease and a significant risk factor for cancer [1].
The mechanisms responsible for this fibrosis develop-

ment in NASH/ASH patients are not well studied but
may involve injury-repair responses and accumulation of
myofibroblasts. Myofibroblasts are thought to be the
cells that lay down the collagens that compose the fi-
brotic tissue [2]. Of the potential sources for these myo-
fibroblasts, activation of hepatic stellate cells (HSCs) has
gained strong support [3]. Inactive HSCs are the main
storage for vitamin A. Upon injury, HSCs activate by
losing their vitamin A containing lipid droplets and
gaining myofibroblast characteristics. This morpho-
logical alteration is associated with increased expressions
of markers such as, collagen type I (Col1a1), smooth
muscle actin α (SMAα), desmin, and nerve growth factor
receptor (P75NTR). Multiple stimuli and pathways have
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been shown to stimulate the expression of these markers
in HSCs. The most prominent among these are trans-
forming growth factor β (TGF β) and platelet-derived
growth factor (PDGF) [4].
To investigate the molecular signals involved in fibrosis

resulting from fatty liver, we used a murine model where
steatosis is induced as a result of hyperactivated insulin
signal, a condition that commonly occurs in NASH pa-
tients. In this mouse model (hereafter referred to as Pten
null mice), Pten (phosphatase and tensin homologue
deleted on chromosome 10) is deleted in the albumin-
positive cell population (PtenloxP/loxP; Alb-Cre+). In such
mice, the liver PI3K/AKT pathway responsible for trans-
mitting insulin signal is induced without the complication
of peripheral insulin resistance and hyperglycemia [5].
The Pten null mouse model thus mimics the liver signals
occurring in NASH patients where hyperinsulinemia often

drives lipid synthesis in the liver. In this model, we have
previously observed significant injury to the liver and ul-
timately liver tumor development [5–7]. In the current
study, we characterize the fibrosis development in Pten
null mice and validated it as an appropriate model to
study the contribution of NASH to fibrosis. In addition,
we investigated the mechanisms underlying the steatosis
contribution to fibrosis development using this model.

Results
PTEN levels are lower in NASH patients
Liver fibrosis/cirrhosis often accompanies the development
of fatty liver as confirmed here with Sirius Red staining
(Fig. 1a). Using a published data set (GSE37031) [8], we
found that expression of PTEN, a lipid phosphatase is nega-
tively correlated with the presence of NASH (Fig. 1b). The
protein expression of PTEN is further verified by analyzing
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Fig. 1 Association of fibrosis and PTEN status with NASH. a Sirius Red staining for fibrosis in biopsied liver human non-alcoholic steatohepatitis
(NASH) patients. Biopsy livers were obtained from patients with various degrees of diagnosed NASH. Sirius Red staining is performed on the livers
to identify fibrotic regions. Top two panels, fibrosis near fatty liver deposits; bottom up second panel, premalignant lesions with intensive Sirius Red
staining; bottom panel, areas with fibrotic tissues only. Right panels, higher magnified images of the cropped areas from the left panels. Arrows:
lipid deposit in hepatocytes. Dotted enclosure, premalignant lesion. b PTEN expression is lower in NASH vs. control samples. Publically available
data set (GSE37031) was analyzed for expression of PTEN. *p < 0.05. c Immunohistochemical analysis of PTEN protein in two patients. Images
generated by The Human Protein Atlas (www.proteinatlas.org)
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images obtained from the Human Protein Atlas (http://
www.proteinatlas.org). Within healthy liver, PTEN expres-
sion is lower in hepatocytes with micro-vesicular lipid
droplets (Fig 1, left two panels). In steatotic liver tissues
from HCC patient, PTEN expression is only detected in
non-hepatocytes (Fig. 1c).

Pten null mice develop progressive liver fibrosis
In mouse models, PTEN loss in the liver leads to hyper-
activation of the PI3K/AKT pathway, leading to progres-
sive NASH followed by spontaneous tumor development
[5–7]. Consistent with our previous results in young
mice [5], the older Pten null mice in the current study
displayed lower body weight and plasma glucose
(Fig. 2a, b) throughout all age cohorts. At 6 months of
age, all mice exhibit fatty liver disease with adenomas

and hyperproliferation of the ductal epithelial similar to
Von Meyenburg syndrome (Fig. 2c). Pericellular stain-
ing of Sirius Red is observed in areas of steatosis at this
age (Fig. 3a) and becomes progressively more severe in
9- and 12-month-old Pten null mice (Fig. 3b, c), con-
sistent with clinical observations where fibrosis accom-
panies steatosis. In addition to Pten null mice, we also
evaluated Sirius Red in a model in which both Pten and
Akt2 are deleted. The deletion of Akt2 eliminates the oc-
currence of NASH that develops in mice lacking PTEN
alone [7]. Consistent with the lack of NASH status of the
Pten/Akt2 double-deleted mice, only isolated ducts are
stained with Sirius Red in the Pten/Akt2 double null mice,
similar to the control livers (Fig. 3a). Together, our data
suggests that PTEN loss leads to fibrosis development and
AKT2 plays a role in this development.
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Fig. 2 Phenotypes of mice carrying the deletion of Pten (Pten null) in the liver. a Body weight of control and Pten null mice. b Fasting plasma glucose in
control and Pten null mice. n= 7–10. *p< 0.05. c Liver-specific Pten deletion mice develop fatty liver disease at an early age (top; FL fatty liver). Adenomas
are also observed in these mice (middle, nl normal liver, Ad adenomas). Morphologies that resemble Von Meyenburg syndrome are also observed in the
livers of the liver Pten null mice (bottom)
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To further confirm the fibrosis pathology, we analyzed
the expression of several fibrosis markers: Col1a1, des-
min, SMAα, and p75NTR as well as tissue inhibitor of
metalloproteases 1 (Timp 1) to quantitatively assess the
buildup of collagen fibers. We show that expressions of
these markers are significantly upregulated in 9- and 12-
month-old Pten null livers (Fig. 4a). Consistent with a
role of AKT2 in the development of fibrosis, the expres-
sion of these fibrogenic genes were reduced when Akt2
is deleted simultaneously with Pten. The only exception
is Timp 1 expression in 9-month-old mice. The expres-
sion of Timp 1 increased by two- to threefolds in Akt2/
Pten double mutants vs. Pten deletion alone. The lack of
downregulation in Timp 1 by Akt2 deletion and its de-
cline in 12- vs. 9-month-old mice may be related to its
potential role in tumorigenesis as all Pten null mice
developed tumors at 12 months of age and Timp 1 has
been shown to inhibit mitogenesis in HCC [9].
To confirm these gene expression changes, we stained

liver sections for SMAα. In 9-month-old Pten null mice,
this staining is mostly observed in areas of severe fatty
liver and the ductal plates (Fig. 4b). In 12-month-old

mice, SMAα staining is distributed throughout the Pten
null livers, whereas the Pten/Akt2 double null and con-
trol livers have little staining for SMAα at either age.
The SMAα staining is further confirmed with immuno-
blotting analysis showing increased SMAα in 9- and 12-
month-old mice (Fig. 4c). These observations show that
Pten deletion leads to progressive and severe fibrosis
that is recovered when AKT2 is simultaneously lost.

HSCs are activated in Pten null liver
The buildup of collagen fibers and upregulation of
Col1a1 and Timp 1 have been attributed to the activa-
tion of HSCs. We isolated HSCs from the 9-month-old
Pten null (HSC-Pm) and control livers (HSC-Con). The
majority of the HSC-Con cells displayed rounded
shapes and intense vitamin A autofluorescence, indicat-
ing quiescent HSCs (Fig. 5a). HSC-Pm was a mixture of
rounded quiescent HSCs and cells with elongated myofi-
broblast morphologies (Fig. 5a). Expressional analysis of
markers indicates that Col1a1 (5.4 × 10−2 vs. 5.9 × 10−3)
and SMAα (1.9 × 10−3 vs. 2.2 × 10−4) are more than five-
fold higher in HSC-Pten null cells when compared with
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Fig. 3 Pten null livers develop progressive fibrosis that is attenuated by AKT2 loss. a Periductal (arrowhead) and pericellular (arrows) staining of Sirius Red
are obvious in the 6- and 9-month-old Pten null livers, indicating fibrosis development. In older mice (12 months of age), more intensive Sirius Red staining
is observed. In Pten and Akt2 double mutants (Pten/Akt2 null), minimum staining for Sirius Red is observed (bottom row). Top row, controls; middle two rows,
Pten null livers. b Sirius Red staining in tumor samples from the Pten null mice. c Sirius Red stained areas were quantified vs. non-stained areas. Percentage
of total area that is positive for Sirius Red is reported. Each circle represents an animal. Open circle, control; solid red circle, Pten null
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HSC-Con (Fig. 5b). Timp 1 expression is also threefold
higher in HSC-Pm vs. HSC-Con. Expression of these
markers is significantly reduced in HSC isolated from the
Pten/Akt2 double null mice (HSC-Dm) compared to their
expression in HSC-Pm cells (Fig. 5c). No difference in
p75NTR and desmin expression was observed in the
freshly isolated HSCs (data not shown).
The morphological differences between the two HSC

cultures are more obvious after the attachment of HSCs
at day 2 of culturing (Fig. 5d). The majority of the HSC-
Con cells are still round-shaped quiescent HSCs retain-
ing vitamin A autofluorescence, whereas most HSC-Pm

cells acquired spindle morphology with very little vita-
min A deposits, indicating that they are activated HSCs.
HSC-Dm displayed similar quiescent phenotype and
retained vitamin A autoflorescence. Like reported, HSC-
Con gradually changed from the round-shaped quiescent
HSC phenotype to the long, stretched, spindle pheno-
type that resembles activated HSC from days 3 to 7 (data
not shown). By day 5, majority of the HSC-Con are acti-
vated and by day 7, all cells display the elongated spindle
morphology. HSCs from Pten null mice changed very lit-
tle morphologically as they already acquired the spindle
morphology by day 2. The cells appear to shrink with
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time, likely due to increasing cell density with culturing
(data not shown). Consistent with the morphological
changes occurring in HSC-Con culture, expressional
analysis of Col1a1, Timp 1, and SMAα increased with
culturing (data not shown).

Activation of HSC in Pten null mice depends on injury but
not intrinsic PI3K/AKT activation
Constitutively activation of AKT results in induction of
collagen I [10] whereas the introduction of dominant
negative PI3K inhibits Timp 1 and SMAα [11]. We
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evaluated whether PI3K/AKT signal may be chronically
activated in HSC-Pm isolated from the Pten null mice
and could be responsible for the phenotypes. While the
levels of PTEN decreased moderately in the HSC-Pm,
the levels of p-AKT did not differ significantly between
HSC-Pm and HSC-Con cells (Fig. 6a). Furthermore,
levels of p-GSK3β, a substrate of AKT did not increase
either. Instead, p-GSK3β and GSK3β levels are slightly
lower in the HSCs from Pten null mice. This observa-
tion suggests that intrinsic signals due to PI3K activa-
tion are unlikely to play a role in the activated HSC
observed in the Pten null liver. Thus, HSC activation

phenotype in Pten null mice is likely independent of
the intrinsic PI3K signaling pathways.
To further confirm this observation, we treated rat

HSC cell line with insulin growth factor (IGF-1) to in-
duce PI3K/AKT. In these cells, overnight starvation led to
moderate downregulation of p-AKT. When IGF-1 is added,
AKT phosphorylation is induced both 15 min and 1 h after
the start of the treatment (Fig. 6b). Phosphorylation of
AKT starts to recover after 1 h (data not shown). We evalu-
ated the expression levels of SMAα, Col1a1, Timp 1, and
desmin (Fig. 6c). The expression of most fibrotic genes did
not alter significantly when p-AKT is induced in the IGF-1
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treated HSCs with the exception of desmin expression. At
15 min, we observed a significant downregulation of des-
min whereas this level increased after 1 h of treatment. On
the other hand, treatment with PDGF and TGFβ both in-
duced migration of the cultured HSCs but did not show
significant increase on p-AKT (Fig. 6d–f). These data, to-
gether with the moderate change observed for PTEN and
p-AKT expression in HSCs isolated from Pten null
livers (Fig. 3a), indicate that the intrinsic signal due to
PTEN loss in HSCs is an unlikely mechanism for their
activation in the injured Pten null liver and that fibrosis
is likely due to secondary effects, e.g., resulting from
the underlying liver injury.
To test this in vivo, we induced injury in the Pten/Akt2

double null mice where injury does not occur spontan-
eously. Inducing injury with DDC in these mice led to ro-
bust expression of markers for fibrosis (Fig. 6g), including
Col1a1, Timp 1, and SMAα. Expression of desmin and
p75 NTR is also moderately induced by treatment of
DDC. This observation suggests that the induction of
these genes do not rely on the signals of AKT2 but do re-
quire injury.

Wnt signaling mediates HSC activation in injured steatotic
Pten null liver
We showed previously that AKT2 loss inhibits liver
injury induced by Pten deletion [6]. In the same study,
we also showed that expression of Wnt7a and 10a and
Fzd2, a Wnt receptor, is induced in the Pten null liver
[6]. Wnt signal may be a potential activator of fibrosis
[12, 13]. To test the hypothesis that lipotoxic injury in-
duces Wnt to promote fibrosis development, we first
confirm that with the exception of Wnt 5a, Wnt 7a, 7b,
and 10a expressions are all induced in 9-month-old
Pten null steatotic livers and returned to control levels
or lower in the non-steatotic Pten/Akt2 double null
livers where Pten is still deleted and Akt2 loss rescued
steatosis (Fig. 7a). We also found that though Wnt 5a
levels did not increase, sFRP5a levels are significantly
reduced (Fig. 7b).
Wnt 5a was found to inhibit the differentiation and ac-

cumulation of lipid in adipocyte and favors the elongated
morphology, whereas its inhibitor soluble fizzled-related
protein 5a (sFRP5a) does the opposite [14–16]. To test
whether aWnt5a-sFRP5a-like signaling may play a role
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in the activation of HSCs, we treated cultured rat HSCs
with a human recombinant sFRP and investigated the
expressions of Col1a1, SMAα, and Timp 1 (Fig. 7c, d).
While the time course response is different for each
marker gene, the expression of Col1a1, SMAα, and
Timp 1 all went down at 48-h posttreatment. Expression
of desmin and p75NTR did not differ within this time
frame (data not shown). A longer time window may be
needed to observe changes in the latter two markers. In
addition, treatment of HSC-Con culture with sFRP
blocked the morphological switch of HSCs (Fig. 8). The
HSC-Con culture remained round quiescent 6 days after
the addition of sFRP, whereas the spindle-shaped acti-
vated HSC morphology progressed in the vehicle-treated
cells. In the HSC-Pm culture, treatment with sFRP was
ineffective (data not shown), likely because the HSCs are
already activated. This data suggests that downregulation
of sFRP5a and upregulation of Wnt ligands observed in
the Pten null liver may have permitted the activation of
HSCs in vivo.
To confirm the involvement of Wnt signal in HSC ac-

tivation, we introduced siRNA against β-catenin, the tar-
get of Wnt to cultured rat HSCs (Fig. 9a). Inhibiting β-
catenin activity led to reduced cell growth and migration

(Fig. 9b, c). Particularly, significant reduction of SMAα
expression (approximately threefold) was observed when
β-catenin is downregulated with moderate inhibition on
the expression of Col1a1 and Timp 1 (Fig. 9d). We also
used chemicals that are capable of interfering with β-
catenin function to modulate Wnt activities in primary
HSCs and determined whether activating β-catenin ac-
tivity is sufficient to promote the progression of primary
HSC activation and whether β-catenin activation is ne-
cessary for this process to occur. LiCl inhibits GSK3β
and blocks the degradation of Wnt downstream target
β-catenin [17], whereas curcumin blocks the activity of
β-catenin [18] (Fig. 9e). Consistent with a positive regu-
latory role of Wnt/β-catenin on fibrogenesis, LiCl3 treat-
ment induced the expressions of desmin, Timp 1, and
Col1a1 (Fig. 9f, left panel), whereas their expressions are
moderately downregulated as a result of curcumin treat-
ment (Fig. 9f, right panel).
Finally, we used a small molecule inhibitor of Wnt/ β-

catenin, ICG-001, which specifically blocks the inter-
action of β-catenin with its coactivator CBP to inhibit β-
catenin transcriptional activity in vivo. Fibrosis in the
Pten null mice becomes obvious after 6 months of age.
To advance this onset of fibrosis and induce the expres-
sion of Col 1a1, desmin, and Timp 1, markers for fibro-
sis, we used a cohort of 1.5-month-old mice with DDC
(Fig. 9g). In these DDC-treated mice, ICG-001 was given
to inhibit Wnt/CBP/ β-catenin transcription [19, 20].
With the exception of Timp 1, expression of all fibro-
genic markers are downregulated with ICG-001 to dif-
ferent extent including SMAα and p75 NTR, of which
the expression did no increase with DDC treatment. Ex-
pression of Col1a1, particularly, is significantly reduced
whereas the change in other makers did not reach sig-
nificance. While not all markers responded in a synchro-
nized manner to LiCl, curcumin, si-β-catenin, or ICG-
001, our data is consistent with a pro-fibrogenic role of
Wnt in the liver. The lack of synchrony is likely due to
the nature of the markers as indicators of HSC activa-
tion rather than drivers of fibrosis. Depending on the
stage of activation/differentiation of HSCs, different
markers are expressed, leading to the varied response to
Wnt signal-induced expression changes.

Discussion
Hepatic fibrosis is a pathological condition that follows
chronic liver disease, including NASH and ASH, and is a
precursor to liver cancer development. In this study, we
explored the molecular link between NASH and fibrosis.
We demonstrated that Pten null model is a relevant
model for studying fibrosis development because (1)
liver disease progresses similarly in humans and Pten
null mice, (2) the Pten null mice develop progressive
and severe fibrosis from 6 months on, and (3) HSCs
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Fig. 8 Images of cultured HSCs treated with or without sFRP. HSCs
isolated from control mice are treated with sFRP on the third day
of culture for 1 day (day 1), 3 days (day 3), and 6 days (day 6). sFRP
treatment completely blocked the activation of HSCs at D3 and D6.
The morphology of HSCs in sFRP-treated cultures did not progress
to spindle fiber whereas obvious spindle fiber formation is observed
in the vehicle-treated cultures
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implicated in fibrosis development in humans are also
activated in Pten null mice. Enhanced expression of
Col1a1, Timp 1, SMAα, and p75NTR suggests the in-
volvement of HSCs. HSCs isolated from Pten null liver
are fully activated with spindle morphology and low

vitamin A autofluorescence, confirming the severe fibro-
sis phenotype that was observed in vivo.
After demonstrating the relevance of the Pten null mice

model, we utilized these mice to investigate the signaling
pathways that drive fibrosis development. We found that
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(1) activation of HSC is associated with steatosis and in-
jury but not directly caused by alterations of PTEN/
PI3K/AKT signaling, (2) blocking Wnt signaling signifi-
cantly attenuated the ability of the quiescent HSCs to
become activated, and (3) activation of Wnt signaling
induces genes associated with activated HSCs. Taken
together, (1), (2), and (3) suggest that Wnt activation
resulting from steatosis induced liver injury activates
HSCs and thus induces hepatic fibrosis.
In humans, fibrosis occurs in patients with viral infec-

tions, ASH, and NASH, as well as biliary and other dis-
eases that lead to injury of liver parenchymals [21]. In
animal experiments, fibrosis development is typically
induced by inducing injury to liver parenchymals [1]. In-
juries are typically induced using physical approaches
such as ductal ligation and chemical approaches such as
carbon tetrachloride treatment, choline deficient diet,
alcoholic feedings, or ligation of the bile duct to cause
acid buildup to damage the liver parenchymal [22, 23].
A similarity among these models and also a significant
clinical interest is damage to hepatocytes and attenu-
ation of their proliferation. In this study, rather than
directly injuring the animal subjects using physical or
chemical means, we used a NASH model where fat
accumulation in the liver is a consequence of hyperacti-
vated insulin signal, mimicking human NASH conditions
[6]. Liver injury in the Pten null mice results from fatty
liver disease much as obesity-induced fatty liver often
leads to NASH in humans. We show here that NASH is
accompanied by deposition of collagen fibers and activa-
tion of HSCs, and preventing NASH resolves these con-
ditions. This study, thus, provides experimental proof
that NASH does lead to fibrosis development.
AKT, the downstream kinase of PTEN, has been shown

to control multiple fibrogenic genes in various tissue/cell
types. In mouse skin, loss of PTEN induces the expression
of fibrogenic genes [24]. Sustained expression of wild type
PTEN in cultured rat HSC inhibited morphological
changes associated with HSC activation [25]. Chronic acti-
vation of PI3K also induced accumulation of collagens
[10, 11]. Thus, we were surprised to find that PTEN and
AKT2 signals did not change significantly in HSCs iso-
lated from the Pten null livers. (Pten deletion is liver-cell
specific in Pten null mice. Pten is not deleted in HSCs.)
Our observations suggest that the effect of AKT2 on
fibrogenesis is likely secondary to its role in steatosis and
the subsequent liver injury.
Wnt signaling has recently been reported to be im-

portant for HSC activation [13, 26]. Liver HSCs express
a number of different receptors for Wnt [27]. During
culturing and activation of HSCs, the expression of Wnt
receptors and ligands is induced [12]. The Wnt antagon-
ist DKK has been found to enhance the transcriptional
activity of an adipogenic gene including peroxisomal

proliferation activated receptor (PPARγ) [26]. Upregula-
tion of PPARγ maintains the lipid droplets and allows
the HSCs to remain quiescent with many lipid droplets
present in each cell whereas Wnt blocks DKK signal,
allowing activation of HSCs [14, 26]. Our study shows
that this signal is likely relevant to the steatosis-induced
fibrosis as several Wnt ligands and receptors are induced
and sFRP5 is inhibited in the injured Pten null liver [6].
Whether Wnt activation is a direct consequence of
steatosis or requires injury to occur remains to be
determined.

Conclusions
In summary, our data established that the liver Pten null
model displays progressive fibrosis prior to cancer devel-
opment. The fibrosis is a result of steatosis induced by
PTEN loss, suggesting that the liver-specific Pten null
mouse is a relevant model for studying the progression
of liver cancer co-developed with fatty liver injury-
induced fibrosis. Our data further indicates that the Wnt
signal pathway likely mediates steatosis-induced fibrosis.

Methods
Animals
Targeted deletion of Pten (Pten null) and Pten/Akt2
double mutant mice (Dm) were reported previously [5, 6].
Control (Con) animals are PtenloxP/loxP; Alb-Cre−. Experi-
ments were conducted according to IACUC guidelines of
the University of Southern California. Fasting glucose
were measured in overnight (16 h) fasted mice. 3,5-dietox-
ycarbonyl-1,4 dihydrocollidine (DDC, 0.1 % w/w diet)
treatment was performed in 3-month-old mice for
5 weeks. Male animals of C57BL/6 and J129svj back-
ground from the same breeding colony were used for all
experiments. For 1.5-month-old mice used for ICG-001
study, DDC (0.05 % w/w diet) were given in three doses
using a 2-day off 1 day on protocol. ICG-001 (5 mg/kg per
day in saline) is delivered using a mini-osmotic pump that
dispenses at 1 μL/h delivery rate. All experiments were
conducted according to IACUC guidelines of the Univer-
sity of Southern California (Protocol #11162).

Human liver samples
Human liver samples biopsied from fibrosis patients
were obtained from Pennsylvania State University. All
patient information was removed, and all experiments
were conducted according to IRB guidelines of Pennsyl-
vania State University.

Database mining
Gene expression data base GSE37031 was downloaded
from NCBI website. All patient information were re-
ported in the original publication for the database [8].
The data set was then analyzed for expressions of
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PTEN in NASH (n = 8) vs. non-NASH (n = 7) patients.
Immunohistochemical staining images were obtained
from the Human Protein Atlas website (http://www.pro-
teinatlas.org/).

Cell lines
Rat HSCs [28] were cultured in 1 g/L glucose Dulbecco’s
modified Eagle’s medium (DMEM) supplemented with
10 % fetal bovine serum (FBS), penicillin (50 units/ml), and
streptomycin (50 μg/ml) at a 37 °C, 5 % CO2 incubator. For
treatment with 0.1 μg/ml mIGF, 50 ng/ml PDGF, or 4 ng/
ml TGFβ, cells were serum starved for 24 h.

Primary hepatic stellate cell isolation
HSCs were isolated using OptiPrep gradient ultracentri-
fugation [12]. HSC fraction was collected from the
medium and 1.034 interface of OptiPrep gradients, and
cultured and morphological changes of HSCs are moni-
tored using both light and fluorescent microscopy to
monitor for vitamin A autofluorescence at indicated
time points. RNAs were isolated for marker analysis to
monitor the activation of HSCs. In experiment using
lithium chloride (LiCl3), LiCl3 (10 mM) was added to
the day 1 culture and incubated for 2 days before the
collection of RNA. In experiments using curcumin, 10-
μM curcumin was added to day 1 culture and RNAs
were collected 2 days after the addition of curcumin.
Frizzled-related protein 1 (sFRP1) (R&D systems, Min-
neapolis, MN) is used at 40 ng/ml added to day 3 HSC
culture and morphology followed for 7 days.

Immunohistochemistry
Liver sections were stained with hematoxylin and eosin
(H&E) for morphology and Sirius Red to visualize fibrotic
fibers. Sirius Red staining is quantified using Image J. Three
animals per groups were quantified, and three randomly
chosen areas per animal were assessed. Anti-smooth
muscle actin α (SMA α) (Sigma-Aldrich) was used in indir-
ect immunohistochemistry to further confirm the buildup
of extracellular matrix.

Quantitative PCR
Total RNA (2 μg) from liver tissues was used for qPCR ana-
lysis for gene expression. Primers used are SMA α, desmin,
Col1a1, and p75NTR as previously indicated [29]. Primers
for Timp 1 are: 5′-CAGTAAGGCCTGTAGCTGT GC 5′-
CTCGTTGATTTCGGGGAAC. GAPDH were detected
for internal controls.

Protein electrophoresis
Protein lysates (40 μg) were loaded from each sample for
electrophoresis using polyacrylamide gels. Membranes
were probed with antibodies for PTEN, p-AKT, p-GSK3β,

and GSK3β (cell signaling). α-Actin (Sigma) protein ex-
pression is used as loading controls.

Statistics
Data were subjected to Student’s t tests for two sample
comparisons. In cases of more than two groups, multi-
variate ANOVA was used to determine the statistical dif-
ferences followed by pairwise comparison using Fischer’s
LSD test. p ≤ 0.05 is considered to be statistically signifi-
cant. Data are presented as mean ± SEM.
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