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The role of complement in the pathogenesis of
renal ischemia-reperfusion injury and fibrosis
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Abstract

The complement system is a major component of innate immunity and has been commonly identified as a central
element in host defense, clearance of immune complexes, and tissue homeostasis. After ischemia-reperfusion injury
(IRI), the complement system is activated by endogenous ligands that trigger proteolytic cleavage of complement
components via the classical, lectin and/or alternative pathway. The result is the formation of terminal complement
components C3a, C5a, and the membrane attack complex (C5b-9 or MAC), all of which play pivotal roles in the
amplification of the inflammatory response, chemotaxis, neutrophil/monocyte recruitment and activation, and direct
tubular cell injury. However, recent evidence suggests that complement activity transcends innate host defense
and there is increasing data suggesting complement as a regulator in processes such as allo-immunity, stem cell
differentiation, tissue repair, and progression to fibrosis. In this review, we discuss recent advances addressing the role of
complement as a regulator of IRI and renal fibrosis after organ donation for transplantation. We will also briefly discuss
currently approved therapies that target complement activity in kidney ischemia-reperfusion and transplantation.
Review
The complement system
The complement system consists of a family of circulat-
ing proteins, cell-surface receptors, proteolytic enzymes,
and cleaved peptides that play an essential role in first-
line host defense against pathogens and in the regulation
of inflammation [1]. Complement activation is a tightly
regulated process that requires sequential and organized
activation of proteins in order to form the effector mole-
cules involved in host defense, pathogen clearance, and
modulation of the inflammatory response [2]. This intri-
cate network of proteins can be activated by three distinct
pathways: classical, lectin, and alternative, all of which con-
verge in the formation of fraction C3 and ultimately in the
downstream formation of the activation products, C3a,
C3b, C5a, and the membrane attack complex (C5b-9). The
classical pathway is triggered upon binding of antigen to
surveillance proteins such as immunoglobulins (IgM or
IgG) or C-reactive protein forming immune complexes
that bind C1q. In turn, C1q activates fractions C1r and
C1s, which are ultimately responsible for cleaving C4 and
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forming the C3 convertase. The lectin pathway is activated
by the binding of complex carbohydrate residues com-
monly found on the surface of pathogens to circulating
mannose-binding lectin (MBL) or ficolins. Both MBL
and ficolins circulate in association with MBL-associated
proteins (MASPs) which, upon activation, allow auto-
activation and formation of MASP2, the protein in charge
of cleaving fraction C4 in the lectin pathway. As in the
classical pathway, C4 cleaves C2 forming the C3 conver-
tase (C4bC2a). The alternative pathway is activated by dir-
ect binding of hydrolyzed C3b to the surface of bacterial
membranes.
In addition to the proteins involved in cleavage and acti-

vation of the complement cascade, the complement system
is also composed of a series of soluble (C4BP, Factor H,
and C1-INH) and membrane-bound (CD35, CD46, CD55,
and CD59) regulatory proteins that prevent excessive acti-
vation and consumption of complement components [3].
These regulators control complement activation mainly by
serving as co-factors for Factor I in the proteolysis of the
C3a and C5a convertases or by directly accelerating the
decay of both of these convertases. Complement receptor
1 (CR1, CD35) is found on the surface of erythrocytes,
neutrophils, dendritic cells, and T and B lymphocytes,
and controls complement activation by serving as a cofac-
tor for Factor I and by direct inhibition of classical and
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alternative pathway convertases. Likewise, CD46 (MCP)
has a dual role serving as a cofactor for Factor I and pro-
moting C3 degradation while CD55 (decay-accelerating
factor) has only been shown to accelerate C3 convertase
decay and CD59 (Protectin) functions by binding to com-
plex C5b-8 and inhibiting membrane attack complex
(MAC or C5b-9) assembly [3]. The soluble regulators
C4BP and Factor H exert their regulatory function by
serving as cofactors for Factor I and accelerating conver-
tase decay [4,5]. Finally, circulating C1 inhibitor (C1-INH)
is a serine protease inhibitor that inactivates proteases
C1r, C1s, and MASP1 and 2 in the complement system
preventing mainly the activation of the cascade via the
classical and lectin pathways, although recent evidence
suggests it may have inhibitory properties over the alter-
native pathway as well [6] (Figure 1).

Role of complement in renal ischemia-reperfusion injury
(IRI)
Ischemia-reperfusion injury (IRI) is a common mechanism
of injury in a wide variety of conditions characterized
by limited tissue perfusion. During the ischemic period,
tissues are deprived of oxygen and nutrients required to
Figure 1 Overview of the complement system. Activation of the compl
in cleavage of the C3 and C5 fractions by the C3 and C5 convertases, whic
the membrane-attack complex (MAC; C5b–C9). Regulation of complement
and C1-INH) and membrane-bound regulators (CD35, CD46, CD55, and CD
maintain normal metabolism and energy homeostasis. As
a result, cells in ischemic tissues become necrotic and re-
lease a variety of endogenous ligands known to stimulate
innate immune responses [7]. Upon restoration of perfu-
sion, endogenous ligands from necrotic and apoptotic
cells activate incoming innate immune cells and exacer-
bate the inflammatory tissue and organ injury [8]. IRI has
been consistently shown to promote quick recruitment
and activation of neutrophils and macrophages to the in-
jury site. Activated neutrophils migrate from peripheral
circulation into the injured site where they become acti-
vated and release pro-inflammatory cytokines, chemo-
kines, and reactive oxygen species (ROS), both locally and
systemically, which have been shown to play a pivotal role
in cell apoptosis and necrosis [9,10].
The complement system has been strongly associated

with the inflammatory response to IRI [11-13]. Although
initially it was believed that the complement system was ex-
clusively involved in responses to non-self-antigens, recent
research has provided a novel perspective into its intricate
role in the sterile immune response to injury and tissue
repair. Following IRI, the release of danger-associated
molecular patterns (DAMPs), neo-antigen formation, and
ement system by the classical, lectin, and alternative pathways results
h, in turn, generate the opsonin C3b, anaphylatoxins C3a and C5a, and
activation and deposition is controlled by fluid-phase (C4BP, Factor H,
59).
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immune complex formation can activate the complement
system by any of the three main pathways [14]. Using ani-
mal models of IRI, it has been demonstrated that comple-
ment can be differentially activated depending on the
organ system being affected and, in some cases, a combin-
ation of mechanisms of activation has been observed. It is
well established that generation of C3 by all three path-
ways plays an important role in renal ischemic injury and
it is accepted that formation of the MAC (C5b–C9) in-
duces direct cell lysis and tubulointerstitial injury [15].
Traditionally, the classical pathway has been implicated in
the pathogenesis of complement driven IRI [16]. However,
studies in rodent models of renal IRI indicate a predomin-
ant role for the alternative pathway and the classical path-
way does not appear to impact reperfusion injury when
tested in C4-deficient mice or RAG-1-deficient animals
which are unable to generate IgM or IgG [17,18]. On the
other hand, Factor B-deficient mice known to be defective
in alternative pathway activation, show a marked reduc-
tion in functional and morphological injury induced by is-
chemia and reperfusion [19]. More recently, the lectin
pathway has gained attention and has been shown to play
a pivotal role in the pathophysiology of ischemic kidney
damage [20]. Mice deficient in MBL-A and MBL-C are
protected from renal IRI and reconstitution of mutant ani-
mals with recombinant MBL led to injury levels compar-
able to those of wild-type mice used in the study [21].
Furthermore, animals lacking MASP2 are protected from
injury following both myocardial and intestinal ischemic
injury and a report by van der Pol in a rat model of renal
IRI suggests a novel role for MBL in cellular injury inde-
pendent of complement activation in which internaliza-
tion of circulating MBL resulted in direct tubular necrosis
[22,23]. Taken together, these studies suggest an emerging
and important role for the lectin pathway mediating ische-
mic kidney damage. However, findings in rodent models
of IRI are not in complete agreement with those from
larger animal models and humans, in which complement
activation in the context of IRI appears to behave differ-
ently. These studies suggest that activation of complement
by the classical pathway and lectin pathway have detri-
mental effects following renal ischemic injury. Recently,
Castellano et al. reported that inhibition of classical and
lectin pathways through the use of recombinant human
C1 inhibitor (rhC1INH) resulted in attenuated renal
dysfunction in a pig model of IRI [24]. Clinically, the
role of the lectin pathway in IRI and transplant injury
remains controversial. Berger et al. analyzed a cohort
of renal transplant patients and found that high pre-
transplant MBL correlated with the severity of rejection
and the rate of allograft loss [25]. However, analysis of lec-
tin gene profiles of kidney donors and recipients failed to
find associations between MBL and MASP2 genotypes
with transplant outcome and a recent study by Bay et al.
suggests poor graft survival in non-HLA immunized kid-
ney recipients with low MBL serum levels [26,27].
To add complexity to the process, complement activa-

tion mechanisms also vary according to different organ
systems. Using models of IRI, it is apparent that liver injury
is mediated primarily by classical complement activation
[28,29], whereas myocardial and intestinal reperfusion in-
jury require both classical and lectin pathways to mediate
pathological damage [22,30-32]. Such discrepancy in the
findings between animal and human models, different
organ systems, and the conflicting results from clinical
studies, indicate a diverse role for complement in IRI.
Some of the most interesting products of complement
activation are the cleaved products C3a and C5a, also
termed anaphylatoxins. These potent pro-inflammatory
peptides interact with G-protein-coupled receptors on the
surface of immune and non-immune cells and promote
the activation inflammatory leukocytes, chemotaxis, hista-
mine release, and increased vascular permeability [33]. In
addition, recent evidence indicates an important role in
antigen presentation to naïve T cells and in the activation
and regulation of alloimmune responses [34-36].
In the mouse kidney, both resident innate immune cells

as well as parenchymal tubular cells express receptors for
C3a (C3aR) and C5a (C5aR) [37,38]. A recent study by
Peng et al. provides compelling evidence of the deleterious
role of C5aR, and to a lesser extent C3aR, signaling in renal
IRI [37]. Mice harboring C5aR or combined C3aR/C5aR
deficiency were protected from ischemic injury at 24 and
48 hours post-reperfusion and showed significant reduc-
tions in BUN serum levels, pro-inflammatory cytokine and
chemokine mRNA expression, and tissue infiltration by ac-
tivated immunocytes. Moreover, they showed that tubular
epithelial cells and macrophages cultured under hypoxia/
reoxygenation conditions respond to C3a and C5a stimu-
lation by expressing cytokines, such as IL-6, TNF-α, KC
(IL-8), and KIM-1, suggesting this to be a central mechan-
ism involved in the process of early neutrophil recruitment,
degranulation, and tissue inflammation in the post-
ischemic period. These observations are supported by earlier
studies in which the use of either C5a receptor antagonist
or siRNA silencing of the C5aR was effective in attenuat-
ing renal damage and down-regulating the inflammatory
response in rodent models of IRI [38-40] (Figure 2).
Animal models of IRI constitute a practical approach to

the study of transplant reperfusion. However, renal IRI
provides a limited approach in the study of transplant re-
perfusion injury as many factors play a role in the complex
interplay of graft acceptance and rejection. As an example,
in models of IRI, the contribution of T and B cell responses
to allogeneic tissue are overlooked. In this context, the
complement system is involved in the pathogenesis of
acute and chronic rejection leading to graft loss in the set-
ting of antibody-mediated rejection (AMR) and formation



Figure 2 Multifaceted activity of the complement system in immunity. Classically, the complement system has been considered a
component of innate immunity with limited activity outside the mechanisms that govern host defense. However, in recent years we
have observed an ever expanding role for complement in the regulation, orchestration, and amplification of the immune response by
regulating innate immunity, adaptive responses, and tissue repair.
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of donor specific antibodies (DSA) that trigger the com-
plement cascade. Complement activation has been shown
to correlate with DSA levels as indicated by C4d depos-
ition in the peri-tubular capillaries. Mechanistically, HLA
present on the allograft endothelial cell is bound by DSAs
and activate the C1 complex. Downstream cleavage of C1
leads to cleavage of C4 forming C4d, which then binds co-
valently to vascular endothelium in the renal allograft and
provides a marker for complement identification by im-
munohistochemistry [41]. Another possible mechanism of
DSA-induced acute allograft damage may involve direct
tubular injury by MAC; recent evidence suggests that the
use of Eculizumab decreases the incidence of acute AMR
in sensitized renal transplant recipients, suggesting an
important role for C5a formation in this process [42].
In chronic AMR, complement activation requires de-
position of DSA and the presence of donor-specific HLA
antibodies correlates well with outcomes after kidney
transplantation [43]. Subsequent activation of comple-
ment leads to C3a and C5a formation and, as described
above, these anaphylatoxins promote activation and
recruitment of inflammatory cells into the graft [44].
Chronic stimulation by migrating activated protein C is
likely to induce cellular injury in response to continuous
signaling by infiltrating inflammatory immunocytes and
from the sustained expression of cytokines, chemokines,
and pro-thrombotic/pro-fibrogenic factors [45]. However,
chronic AMR may also be primarily complement inde-
pendent in the absence of C4d deposition by activation of
DSAs that could lead to progressive glomerular injury and
transplant glomerulopathy.

Complement activation in the brain-dead organ donor
Brain death is the irreversible loss of function of all parts
of the brain, including the brain stem. Loss of brain stem
function and the autonomic storm that follows cata-
strophic brain injury have been associated with tissue
hypoperfusion, dysregulated metabolism, and generalized
inflammation, all detrimental to organ quality and function
[46-48]. In recent years, several reports have highlighted
an emerging role for complement in the pathogenesis of
tissue injury in the context of organ donation [49]. Early
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studies by Kusaka et al. indicate that as early as 1 hour
post brain death induction, C3 is detectable in the glom-
eruli and vascular endothelium of brain-dead rats [50].
This increased expression of renal C3 has been widely as-
sociated with poor allograft function and an increased rate
of cellular rejection in animal models of kidney trans-
plantation [51-53]. Furthermore, using a mouse model
of brain-death, Atkinson et al. showed that C3 deficient
animals had a significant decrease in cardiac troponin
levels, reduced immunocytic infiltration to the heart, and
markedly reduced expression of pro-inflammatory cyto-
kines and chemokines compared to wild-type controls
[54]. More recent evidence suggests that inhibition of
complement activation in rodent models of brain-death is
effective in protecting renal and cardiac grafts from in-
flammatory injury and prolonging graft and animal sur-
vival in the post-transplant period [54,55].
In human deceased donors, there is substantial evidence

of complement activation in the pre-transplant period. A
study comparing whole genome expression found a sig-
nificant up-regulation of complement-related genes (C1q,
C1s, C1r, C2, C3, C4, CFB, and CR1) in kidneys from de-
ceased compared to those recovered from living donors.
Overexpression of complement components in brain-dead
donors correlated directly with length of cold-ischemia
time and inversely with early and late graft function [56].
In a similar study, Damman et al. reported that high levels
of the terminal MAC in the plasma of brain-dead donors
was strongly associated with acute rejection within the
first year post-transplantation [57]. Additionally, activation
of the C5a-C5aR axis in kidney donors plays an important
role in the amplification of the inflammatory response to
brain death [58].
Complement activation has also been suggested as a po-

tential tool to determine the degree of donor injury and
predict graft function after transplantation. Elevated donor
MBL levels have been associated with suboptimal graft
function after transplantation [25]. Furthermore, a recent
study analyzing 75 kidney transplant recipients showed
that increased levels of circulating MAC (C5b-9) in the
peri-transplant period and early after reperfusion, strongly
correlated with poor allograft function and suggested the
use of MAC as a clinical marker in the prediction of de-
layed graft function (DGF) [59]. In a similar study, de
Vries et al. detected a transient release of soluble MAC in
post-reperfusion samples from deceased donor kidney
grafts but not from those obtained from living donors.
However, sMAC release did not correlate to C5b-9 depos-
ition in biopsied kidney grafts analyzed 45 min after reper-
fusion [60]. Collectively, both animal and human studies
highlight the importance of pre-transplant activation of
the complement system in the pathogenesis of tissue dam-
age after brain death and suggest potential therapeutic tar-
gets for the improvement of organ quality and function.
Complement system and the progression to fibrosis
The complement system has been linked to a wide variety
of non-immunological processes, including modulation of
stem cell biology, tissue regeneration, and progression to
tissue fibrosis after injury [61-64]. There is ample evidence
suggesting a role for complement activation in experimen-
tal fibrosis and repair. Using a model of liver regeneration,
Strey et al. clearly showed how C3a and C5a are pivotal to
the early priming stages of hepatocyte regeneration and a
more recent report from DeAngelis confirms these obser-
vations and expands by showing a regulatory feedback
mechanism involving NK cells, complement, and IL-4
modulating liver repair [65,66]. Using a similar approach,
He et al. evidenced an effect of low-dose CR2-Crry in liver
protection and enhanced regeneration by controlling IL-6
expression and STAT3 activation, reduced hepatic ATP
depletion, and attenuated oxidative stress [67].
In the kidney, alterations in complement activation

have been implicated in multiple disease processes lead-
ing to renal fibrosis, such as polycystic kidney disease,
glomerulonephritis, hemolytic uremic syndrome, and
renal transplantation [68-71]. However, the role of com-
plement activation in the modulation of immunity and
pathogenesis of renal fibrosis in the context of IRI re-
mains a work in progress. IRI of the kidney is a well-
established cause of renal fibrosis [72]. Factors such as
sustained innate immune activation, endothelial cell dys-
function, hypoxia, and chronic microvascular injury have
all been implicated in the maladaptive response that re-
sults in fibrogenesis and progression to chronic kidney
disease [73-75]. Both complement activation and endo-
thelial cell activation are hallmarks of IRI, DGF, and allo-
graft injury early after kidney transplantation. IRI is an
inflammatory process initiated at the endothelial surface
of the vasculature and is associated with increased sus-
ceptibility to subsequent acute rejection episodes and the
vascular changes associated with chronic rejection [76].
Experimentally, C5a has been shown to induce P-selectin
expression and induction of neutrophil rolling upon bind-
ing to C5a receptors (C5aR) on the surface of endothelial
cells (EC) and polymorphonuclear neutrophils (PMNs)
[77]. This is followed by release of reactive oxygen species
(ROS) which further amplify endothelial injury, endothe-
lial gap formation with leak of plasma, inflammatory cell
migration, and NF-κB translocation.
Using a mouse model of unilateral ureteral obstruction,

Boor et al. showed that C5-knockout animals and animals
treated with C5aR antagonist had significantly reduced tis-
sue fibrosis at 5 and 10 days post-injury [78]. This protect-
ive effect appeared to be mediated by a reduction in
C5aR-driven TGF-beta production suggesting a new role
for anaphylatoxin C5a in the complex mechanisms in-
volved in tissue repair. In a similar study, Bao et al. re-
ported a significant reduction in inflammation and renal
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fibrosis after transplanting kidneys from Crry(−/−)C3(−/−)
mice into C3aR and/or C5aR-knockout recipients [79].
They found that in this model it was C3aR deficiency
which resulted in the observed protective effect and that
the improved renal function and reduced fibrosis levels
were the result of inhibited C3a-driven inflammatory in-
jury rather than a direct profibrotic effect of C3a on in-
jured tubular cells.
Although the link between inflammation and fibrosis is

well established, the origin and mechanism of activation/
differentiation of renal fibroblasts is still a matter of de-
bate. Differentiation of tubular epithelial cells into mes-
enchymal cells (epithelial to mesenchymal transition) and
the functional and phenotypical progression of endothelium
to mesenchymal cells (endothelial to mesenchymal transi-
tion; EndMT) have been proposed as potential sources of
myofibroblasts responsible for renal fibrosis after injury.
Further, it has been proposed that endothelial cells which
progress to EndMT may play a pivotal role in the early
pathogenesis of renal fibrogenesis [80]. To test this hy-
pothesis, Basile et al. used a rodent model of IRI and doc-
umented a significant loss of vascular density following
injury, which was associated with interstitial expansion of
endothelial cells expressing mesenchymal cell markers
and suggesting endothelial to mesenchymal transition
post-AKI [81]. In agreement with these findings, Curci
et al. found a significant reduction in renal fibrosis in pigs
receiving C1 inhibitor therapy prior to reperfusion injury.
This study postulates that the anti-fibrotic effect of C1-
INH therapy is related to reduction in Akt signaling
within injured endothelium which led to inhibition of
EndMT and prevented vascular rarefaction in injured kid-
neys [82]. Altogether, these studies highlight a central role
for endothelium in the progression to fibrosis and a novel
role for complement in the modulation of endothelial cell
activation and EndMT. In addition, there is also experi-
mental evidence suggesting complement activation can
also induce fibrosis by direct modulation of fibroblast
function. Cleavage of C3 and exogenous supplementation
of C3a has been shown to induce renal human mesangial
cells to convert to the synthetic phenotype by increasing
the expression of osteopontin, matrix Gla, and collagen
type 1 alpha 1 (collagen IV) mRNA [83]. Also, MAC for-
mation is a promoter of peritubular myofibroblast accu-
mulation and plays a role in the pathogenesis of renal
fibrosis in various glomerulopathies [84].
Macrophage phenotype and function are critical deter-

minants of fibrotic scarring and resolution of renal injury
[85]. Monocytes from circulation that enter the kidney in
response to inflammation undergo separate pathways of
differentiation into classically activated M1 macrophages
or the alternative M2 phenotype. Activation of M1 inflam-
matory macrophages may lead to the expression of MHC
class II antigens and release of proinflammatory cytokines,
further propagating inflammation and activating profibro-
tic pathways. In contrast, M2 macrophages secrete regen-
erative trophic factors that promote cell proliferation,
reduce apoptosis, and stimulate angiogenesis. In murine
models of IRI, M1 macrophages accumulate early in the
first hours of reperfusion, through CCR2- and CX3CR1-
dependent mechanisms, and produce IL-1α, IL-6, IL-12,
and TNF-α [86,87]. Complement activation modulates
macrophage differentiation and engagement of C5a-C5aR
axis has been shown to promote M1 polarization and pro-
gression to inflammatory injury and fibrosis [88]. More-
over, in the kidney, generation of ROS is mediated by the
NADPH oxidases (NOX) present in infiltrating PMNs and
activated endothelium. Originally named gp91phox, Nox2
is the classical phagocytic NADPH oxidase, an enzyme
that is naturally involved in the immune response includ-
ing the “oxidative burst” [89,90]. It is one of the seven cur-
rently known Nox isoforms. Complement has been linked
to oxidative stress and PMN activation in models of sepsis
and inhibition of complement activation resulted in re-
duced ROS production and attenuation of PMN migration
and activation to the site of injury [91,92]. We have dem-
onstrated that Nox2 is an important mediator of renal
fibrosis in kidneys undergoing chronic rejection and
chronic cyclosporine induced nephrotoxicity [93,94].
Altogether, complement is likely to play a central role
in the mechanisms leading to renal fibrosis by preventing
inflammatory injury, activation and differentiation of in-
flammatory leukocytes, reducing the production of ROS
and, most importantly, by preventing EndMT following
acute ischemic injury. However, more work is required to
fully elucidate the specific role of complement activation
in the control of fibrotic responses and the progression to
chronic kidney disease (Figure 3).

Therapies targeting the complement system
Treatment aimed at blocking or attenuating complement
activation during IRI and organ transplantation has gained
increasing attention over the last two decades. Many mol-
ecules with the ability to control upstream complement
activation and specific inhibitors of the terminal end-
products of complement activation have been explored
with varying degrees of success both in animal models and
in the clinical setting. Here, we review two complement
inhibitors currently approved by the food and drug admin-
istration (FDA) for the treatment of human disease with
proven evidence of effectiveness in IRI and potential uses
in the prevention of fibrosis and chronic tissue injury.

C1 esterase inhibitor (C1-INH)
C1-INH is a soluble regulator belonging to the family of
serin-protease inhibitors (serpins). Target proteases such
as C1r, C1s, MASP1 and 2 (complement system), Factor
XII and plasma kallikrein (contact system), Factor XI



Figure 3 Role of complement in renal ischemia-reperfusion injury, inflammation, and progression to kidney fibrosis. Ischemia-reperfusion
injury activates the complement system by release of endogenous ligands (DAMPs) from acutely injured tissue. The formation of the membrane
attack complex (MAC) results in direct injury to the kidney by inducing apoptosis in epithelial tubular cells. In addition, the cleavage of C3 and C5
and subsequent release of anaphylatoxins (C3a and C5a) promotes inflammatory cell recruitment and release of pro-inflammatory cytokines/
chemokines and reactive oxygen species, intensifying the immune response and further amplifying the level of tubular necrosis and apoptosis.
Activated endothelium, monocytes and injured tubular epithelium have all been shown to secrete pro-fibrogenic factors such as TGF-β and PDGF
in response to C3aR and C5aR ligation by C3a and C5a, respectively, which in turn activates local fibroblasts inducing collagen deposition and
tissue repair. Dysregulated activation of complement and the subsequent inflammatory response ultimately results in maladaptive tissue repair
and fibrosis.
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and thrombin (coagulation system) recognize the react-
ive center loop on the C1-INH and, upon cleavage, both
molecules become covalently bound and the target pro-
tein is irreversibly inhibited [95]. These diverse regula-
tory effects on the fibrinolytic, contact, coagulation, and
complement system make it an ideal candidate for treat-
ment of IRI, antibody-mediated rejection and hyper-acute
rejection after transplantation, and in the progression
to fibrosis following acute kidney injury. A recombin-
ant form of C1-INH (rhC1INH) has been approved for
the treatment of hereditary angioedema [96]. Numerous
pre-clinical studies have demonstrated effectiveness in the
prevention of delayed graft function after ischemic injury
in pigs and attenuated reperfusion injury in rodent models
of intestinal, myocardial, hepatic, and neurological injury
[24,97-100]. Moreover, pre-treatment with rhC1INH was
shown to prevent the development of fibrosis in pigs
subjected to renal IRI [82]. For the treatment of acute
AMR, rhC1INH had a beneficial effect when tested in
a kidney transplant model using presensitized baboons
as recipients [101]. For lung transplantation, C1-INH ther-
apy was recently evaluated in lung transplant recipients
exhibiting early signs of primary graft dysfunction (PGD).
In this study, C1-INH treatment improved the 1-year sur-
vival and reduced length of intensive care unit stay when
compared to patients with early signs of PGD not receiv-
ing treatment outside the standard of care [102].

Eculizumab
Eculizumab is a humanized monoclonal antibody that in-
hibits complement fraction C5 preventing formation of
terminal activation products C5a and MAC (C5b-9). Ecu-
lizumab has been approved by the FDA for the treat-
ment of paroxysmal nocturnal hemoglobinuria and atypical
hemolytic uremic syndrome (aHUS). However, it has re-
ceived major interest in the field of transplantation for the
treatment of AMR and prophylactically in the prevention of
post-transplant aHUS in kidney transplant recipients. A re-
cent review summarizes the use of eculizumab for the pre-
vention AMR and aHUS in kidney transplantation [103].
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As described earlier, anaphylatoxin C5a and signaling
through the C5aR play pivotal roles in mediating IRI and
the dysregulated inflammatory response in the brain-dead
donor [38,58]. Furthermore, the use of C5a receptor an-
tagonists has been effective in attenuating the extent of
IRI in small animal models and limiting fibrogenic re-
sponses after acute kidney injury [39,78,104]. Currently, a
clinical trial is being conducted to study the impact of
eculizumab in the prevention of DGF in recipients of kid-
neys recovered from deceased donors (NCT01919346).
The use of eculizumab for treatment of deceased donors
prior to transplantation has yet to be explored.

Conclusions
The multiple interactions between injury, immune re-
sponse, and tissue repair are still a matter of intense
study. It is now accepted that the complement system
plays a central role in the pathogenesis of renal IRI and
in the mechanisms leading to tissue damage in the de-
ceased organ donor. Current evidence suggests that the
formation of the terminal products of activation, such as
MAC (C5b-9) and the generation of anaphylatoxins C3a
and C5a, are responsible for triggering pro-inflammatory
responses detrimental to ischemic tissue and antibody-
mediated rejection. Further, a growing body of work sug-
gests an important role in the modulation of adaptive
immune responses in a wide variety of pathological condi-
tions. More importantly, recent research indicates a role for
complement in the regulation of tissue repair and the pro-
gression of fibrosis in models of acute kidney injury. These
findings place the complement system as a centerpiece tar-
get in the elucidation of the precise mechanisms governing
adequate (adaptive) and abnormal (maladaptive) tissue re-
pair. However, the translation of therapies based on com-
plement inhibition from the bench to bedside has been
lacking and more research is required to fully understand
the role of complement in the context of clinical IRI and
transplantation. The development of targeted treatment
strategies that lessen the need for immunosuppression of
transplant recipients and that also have the ability to reduce
inflammatory injury and tissue fibrosis is of paramount im-
portance to maximize the limited organ donor pool and
improve current transplant outcomes worldwide.
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