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Abstract

Activated hepatic stellate cells (HSC) play a central role in scar formation that leads to liver fibrosis. The molecular
mechanisms underlying this process are not fully understood. Microarray and bioinformatics analyses have proven
to be useful in identifying transcription factors that regulate cellular processes such as cell differentiation. Using
oligonucleotide microarrays, we performed transcriptional analyses of activated human HSC cultured on Matrigel-
coated tissue culture dishes. Examination of microarray data following Matrigel-induced deactivation of HSC
revealed a significant down-regulation of myocardin, an important transcriptional regulator in smooth and cardiac
muscle development. Thus, gene expression profiling as well as functional assays of activated HSC have provided
the first evidence of the involvement of myocardin in HSC activation.

Introduction

Liver fibrosis is commonly observed after chronic liver
injury and is believed to be a risk factor for cirrhosis and
hepatocellular carcinomas (HCC). Fibrosis is a disease
typified by the increased production and decreased degra-
dation of extracellular matrix (ECM) surrounding hepato-
cytes [1,2]. Hepatic stellate cells (HSC) is play a key role in
disease progression [3]. Following liver injury, quiescent
vitamin A-containing HSC are activated and assume a
myofibroblast-like phenotype characterized by prolifera-
tion, contractility and chemotaxis, accompanied by a pro-
gressive loss of stored vitamin A. Activated HSC are also
trans-differentiate into o.-smooth muscle actin (o.-SMA)-
positive, and produce excessive ECM, including type I col-
lagen and fibronectin. Studies to date have demonstrated
that several transcription factors, including KLF6 [4], c-
Myb [5], Smad3 [6], MEF2 [7], FOXO1 [8], and PPARS [9]
are involved in HSC activation.

Discussion

Transcriptional analysis of HSCs

Omics technologies including genomics and proteomics
are key tools in identifing the molecular mechanisms
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responsible for disease onset and progression. Gene
expression profiling studies using DNA microarrays
have been utilized to extensively characterize human
fibrotic liver samples as well as livers from pre-clinical
animal models of fibrosis. However, since quiescent stel-
late cells represent only 5-8% of total liver cells, it is dif-
ficult to examine accurately the gene expression changes
in HSCs in whole liver. Culturing HSCs on plastic tissue
culture dishes induces activation and this culture-
induced activation has been employed as a model of
HSC activation in liver fibrogenesis and profiled in mul-
tiple studies [10-15]. For example, Boer et al. [12] identi-
fied insulin-growth factor-binding proteins and gremlins
as novel markers of liver fibrogenesis. Jiang et al. [11]
identified the up-regulation of Wnt pathway signaling-
related genes, Wnt5a and frizzled 2 in culture-induced
activation and in development of liver fibrosis. These
results clearly underline the usefulness of transcriptional
analysis of activated HSC in categorizing molecular
mechanisms responsible for liver fibrosis.

Matrigel-induced HSC deactivation

The ECM components regulate cellular process such as
cell shape, motility, growth, differentiation and gene
expression. BD Matrigel, a basement membrane matrix
marketed by BD Biosciences is a gelatinous protein
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mixture secreted by Engelbroth-Hom-Swarm (EHS)
mouse sarcoma cells and resembles the complex extra-
cellular matrix environment. When cultured on plastic
dishes, isolated quiescent HSC spontaneously transform
to the activated state. However, culturing on Matrigel-
coated dishes maintains the cells in a quiescent state
[16]. Additionally, activated HSC can be deactivated on
Matrigel, resulting in decreased a.-SMA and collagen
gene expression [17,18]. Figure 1. shows a comparison
of rat primary HSC cultured either on plastic or Matri-
gel-coated dishes for 3 days, with Matrigel cultured stel-
late cells exhibiting a significantly reduced expression of
a-SMA. Similarly, human HSC cell lines, LI90 and LX-2
cultured on Matrigel-coated dishes were deactivated,
taking on around, compact appearance. Even though it
is still unclear whether Matrigel can induce HSC rever-
sion to a quiescent state, the cells cultured on Matrigel-
coated dish were apparently deactivated.

Our previous expression profiling study using Affyme-
trix Human Genome U133 plus 2.0 Array demonstrated
that 1044 genes including collagen genes were down-regu-
lated in LI9O cell plated on Matrigel-coated dishes, while
2306 genes were up-regulated [19]. The over-represented
Gene Ontology (GO) classification for down-regulated
genes included categories related to ‘muscle development’
and ‘cell growth’. The GO term ‘muscle development’
exhibited the lowest P-value of the biological processes
and included the a-SMA gene. Several genes in the mus-
cle development category exemplify the characteristics of
myofibroblast-like cells and are expressed by smooth mus-
cle cells. The down-regulation of muscle development-
related genes was the primary biological process resulting
in Matrigel-induced deactivation. To identify key tran-
scription factors, we used Genomatix, a bioinformatics
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tool and BiblioSphere analysis to demonstrate that 41
transcription factors were significantly down-regulated in
LI9O0 cells plated on Matrigel-coated dishes. Of these tran-
scription factors, myocardin decreased 10-fold in LI9O cell.
Knockdown or over-expression of myocardin significantly
affected expression levels of muscle development-related
genes [19], indicating that myocardin is a key transcrip-
tional factor in Matrigel-induced HSC deactivation.

Myocardin function in activated HSCs

Myocardin, a potent serum response factor (SRF) coactiva-
tor expressed in cardiac and smooth muscle cells, activates
smooth muscle genes [20-22]. The SRF/myocardin com-
plex has been reported to regulate the expression of mus-
cle development-related genes such as a-SMA, CALDI,
CNN1, and MYLK [23,24]. Myocardin can also function
as a transcription coactivator by directly interacting with
Smad3 to enhance SM220 promoter activity in a CArG
box/SRF -independent manner [25,26], suggesting that
myocardin may associate with Smad3 and thereby regulate
collagen expression in HSCs. Knockdown of myocardin in
human HSCs down-regulated some of the muscle devel-
opment-related genes including a.-SMA and collagens
[19]. Herrmann et al. reported that TGF-B up-regulated
SRF nuclear translocation and DNA-binding activity in
activated HSC and simultaneously increased expression of
the co-activator myocardin [27]. Targeted knockdown of
SRF with RNAI decreased o.-SMA expression in activated
rat HSC [27]. In addition, our studies also demonstrated
that myocardin gene expression was up-regulated during
HSC activation of primary HSC and in fibrotic liver of
dimethylnitrosamine (DMN)-induced fibrosis in a pre-
clinical model [19]. These studies suggest a regulatory role
for myocardin in both culture-induced HSC activation and

Figure 1 Effect of Matrigel-induced deactivation on the morphology of activated rat activated HSCs. Primary rat HSCs were plated either
on plastic (left) or Matrigel-coated (right) tissue culture dishes and cultured for 3 days. Confocal microscopic images of HSC plated on plastic or

Matrigel-coated dishes following staining with a-SMA antibody (green) and TOPRO-3 nuclear stain (blue). HSCs cultured on plastic dishes exhibit
myofibroblast-like features, immunostaining for a-SMA, while cells plated on Matrigel-coated dishes stained weakly for o.-SMA.
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Matrigel-induced HSC deactivation and in the pathogen-
esis of liver fibrosis.

While the role of myocardin in cardiac and smooth
muscle development is well documented, recent studies
have also implicated myocardin over-expression as being
essential and sufficient for TGF-§ mediated differentiation
of human fibroblasts to myofibroblasts [28]. Liver fibro-
blasts participate in fibrogenesis by trans-differentiating
into myofibroblast-like cells [29]. In our studies, myocar-
din over-expression induced the trans-differentiation of
normal fibroblasts into myofibroblast-like cells with con-
comitant increase in a-SMA and COL1A1 gene expres-
sion [19]. We also found that myocardin increased SRF
gene expression during trans-differentiation. SRF has a
CArG box within the promoter region, which facilitates
positive autoregulation. Accordingly, a-SMA gene expres-
sion, which is regulated by SRF, exhibited greater increases
in expression than COL1A1 following myocardin over-
expression. Our observations agree with previous findings
[28] that TGF-B1-induced myocardin expression results in
trans-differentiation of normal fibroblasts [28]. Thus, myo-
cardin may play a key role in fibroblast trans-differentia-
tion into myofibroblast-like cells during liver fibrosis.
Further cellular localization studies will help to understand
the function of myocardin in liver fibrosis. A quality anti-
body against myocardin is necessary and will enable sub-
cellular localization studies to be performed.

Conclusions

In summary, transcriptomics has become a key tool for
the potential drug target and biomarker identification in
the pharmaceutical industry. Omics technologies enable
us to find key molecules responsible for disease. We
have successfully identified myocardin as a transcription
regulator involved in Matrigel-induced HSC deactiva-
tion. The myocardin pathway is therefore a promising
new therapeutic target in the treatment of liver fibrosis.
However, most transcription factors including myocar-
din are not readily druggable with small molecule inhi-
bitors. To find more druggable targets, we need to map
upstream to identify druggable upstream target is the
RhoA associated kinase or ROCK [30]. In addition,
emerging siRNA delivery technologies [31] may enable
us to directly target myocardin mRNA.
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